Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'extension of a problem':
Найдено статей: 24
  1. Рассматривается игровая задача на максимин функции платы, определенной на произведении множеств притяжения терминальных состояний систем первого и второго игрока. Данные множества притяжения найдены с помощью конструкций расширения в классе конечно-аддитивных мер.

    We consider a game problem of maximin of cost function defined on the product of attraction sets of players’ dynamic systems terminal positions. These sets are constructed using the extension in the class of finitely additive measures.

  2. Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.

    A function defined on an open (finite, semi-finite, infinite) interval is called regulated if it has finite one-sided limits at each point of its domain. In the present paper we study spaces of regulated functions, in particular, their dense subsets. Our motivation is applications to differential equations. Namely, we consider the Cauchy problem for a scalar linear differential equation with coefficients, which are derivatives of regulated functions. We immerse the Cauchy problem into the space of the Colombeau generalized functions. If the coefficients are derivatives of step functions, we find explicit solution R(φμ,t) of the Cauchy problem (in terms of representatives); its limit as μ→+0 is defined to be the solution of the original problem. In this way, we obtain a densely defined (on the space of regulated functions) operator T, which associates the solution to a Cauchy problem with this problem. Next, using a well-known topological result on a continuous extension, we extend the operator T to the operator T defined on the entire space of regulated functions. We have given the explicit representation of solution of the Cauchy problem for the inhomogeneous differential equation. Illustrative examples are also offered.

  3. Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).

    We consider a linear time-varying control system with an observer with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p. \qquad(2)$$ We study a problem of control over asymptotic invariants for the system closed by linear dynamic output feedback with time-varying coefficients. The research method presented in the paper is based on the construction of a system of asymptotic estimation for the state of the system (1), (2), introduced by R. Kalman. For solving the problem, we use the extension of the notion of uniform complete controllability (in the sense of Kalman) proposed by E.L. Tonkov for systems with coefficients from wider functional classes. The notion of uniform complete observability (in the sense of Tonkov) is given for the system (1), (2). For $n=2$, it is proved that uniform complete controllability and uniform complete observability (in the sense of Tonkov) of the system (1), (2) with locally integrable and integrally bounded coefficients are sufficient for arbitrary assignability of the upper Bohl exponent and of the complete spectrum of the Lyapunov exponents for the system closed-loop by linear dynamic output feedback. For the proof, we use the previously established results on uniform global attainability of a two-dimensional system (1), closed by linear time-varying static state feedback, under the condition of uniform complete controllability (in the sense of Tonkov) of the open-loop system (1).

  4. Рассматривается абстрактная  задача управления и ее релаксации, связанные с ослаблением ограничений на выбор управляющих программ. Исследуются соотношения, связывающие множества допустимых элементов исходной задачи и ее расширения. Получены условия, достаточные для устойчивости (с точностью до замыкания) достижимого множества невозмущенной задачи.

    The abstract problem of control and its relaxations connected with a weakening of constraints on the choice of programmed strategies are considered. Relations connecting the sets of admissible elements of the initial problem and its extension are investigated. Conditions sufficient for the stability of the initial attainable set (with the exactness until a closure) are obtained.

  5. Проблема П.С. Новикова для суперинтуиционистской логики $L$ состоит в описании семейства всех максимальных консервативных (то есть полных по П.С. Новикову) расширений $L$ в обогащенном дополнительными логическими связками и константами языке. В связи с континуальностью семейства всех суперинтуиционистских логик имеет смысл рассматривать проблему П.С. Новикова применительно к логикам, уже попавшим по тем или иным причинам в поле зрения исследователей.

    Известно, что существуют три так называемые предтабличные суперинтуиционистские логики (то есть не являющиеся табличными, но такие, что все их собственные расширения уже табличны). Одна из них - логика $L2$ - характеризуется классом корневых упорядоченных множеств глубины 2. Установлено, что для суперинтуиционистской логики $L2$ в языке с единственной дополнительной константой существует ровно пять полных по Новикову расширений; дано их семантическое описание.

    В настоящей работе предлагается явная аксиоматика гильбертовского типа для каждого из пяти существующих полных по П.С. Новикову расширений суперинтуиционистской логики $L2$ в языке с одной дополнительной логической константой.

    The Novikov problem for a superintuitionistic logic $L$ is to describe the class of all maximal conservative (i.e. P.S. Novikov complete) extensions of $L$ in the language with additional logical connectives and logical constants. Since the family of all superintuitionistic logics has the power of the continuum, it is sensible to apply the P.S. Novikov problem to superintuitionistic logics which for one reason or other have already come to researchers' attention.

    In particular, there are three so-called pretabular superintuitionistic logics (i.e. non-tabular, but all their own extensions are tabular). One of them - the logic $L2$ - is characterized by the class of finite rooted linearly ordered sets of depth 2. It is established that for superintuitionistic logic $L2$ in the language with one additional constant there are exactly five P.S. Novikov complete extensions; their semantic description is given.

    In this paper we propose an explicit axiomatics for each of the five existing P.S. Novikov complete extensions of the superintuitionistic logic $L2$ in the language containing an additional constant.

  6. Золотых Н.Ю., Кубарев В.К., Лялин С.С.
    Метод двойного описания над полем алгебраических чисел, с. 161-175

    Рассматривается задача построения вершинного описания выпуклого полиэдра, заданного как множество решений некоторой системы линейных неравенств, коэффициенты которой являются алгебраическими числами. Обратная задача эквивалентна (двойственна) исходной. Предлагаются программные реализации нескольких модификаций хорошо известного метода двойного описания (метода Моцкина-Бургера), решающего поставленную задачу. Рассматривается два случая: 1) элементы системы неравенств - произвольные алгебраические числа, при этом каждое такое число задается минимальным многочленом и локализующим интервалом; 2) элементы системы неравенств принадлежат заданному конечному расширению ${\mathbb Q} (\alpha)$ поля ${\mathbb Q}$, при этом для $\alpha$ задаются минимальный многочлен и локализующий интервал, а все элементы исходной системы, конечные и промежуточные результаты представлены как многочлены от $\alpha$. Как и ожидалось, программная реализация для второго варианта значительно превосходит реализацию для первого варианта по производительности. Для большего ускорения во втором случае предлагается использовать булевы матрицы вместо матриц невязок. Результаты вычислительного эксперимента показывают, что программные реализации вполне пригодны для решения задач умеренных размеров.

    Zolotykh N.Y., Kubarev V.K., Lyalin S.S.
    Double description method over the field of algebraic numbers, pp. 161-175

    We consider the problem of constructing the dual representation of a convex polyhedron defined as a set of solutions to a system of linear inequalities with coefficients which are algebraic numbers. The inverse problem is equivalent (dual) to the initial problem. We propose program implementations of several variations of the well-known double description method (Motzkin-Burger method) solving this problem. The following two cases are considered: 1) the elements of the system of inequalities are arbitrary algebraic numbers, and each such number is represented by its minimal polynomial and a localizing interval; 2) the elements of the system belong to a given extension ${\mathbb Q} (\alpha)$ of ${\mathbb Q}$, and the minimal polynomial and the localizing interval are given only for $\alpha$, all elements of the system, intermediate and final results are represented as polynomials of $\alpha$. As expected, the program implementation for the second case significantly outperforms the implementation for the first one in terms of speed. In the second case, for greater acceleration, we suggest using a Boolean matrix instead of the discrepancy matrix. The results of a computational experiment show that the program is quite suitable for solving medium-scale problems.

  7. Проблема голоморфного продолжения функций, определенных на границе области, в эту область актуальна в многомерном комплексном анализе. Она имеет долгую историю, начиная с работ Пуанкаре и Гартогса. В статье рассматриваются непрерывные функции, определенные на границе ограниченной области $ D $ в $ \mathbb C ^ n $, $ n> 1 $, с кусочно-гладкой границей и обладающие обобщенным граничным свойством Мореры вдоль семейства комплексных прямых, которые пересекают границу области. Свойство Мореры состоит в том, что интеграл заданной функции равен нулю по пересечению границы области с комплексной прямой. Показано, что такие функции голоморфно продолжаются в область $ D $. Для функций одной комплексной переменной свойство Мореры, очевидно, не влечет голоморфного продолжения. Поэтому эту проблему следует рассматривать только в многомерном случае $ (n> 1) $. Основным методом изучения таких функций является метод многомерных интегральных представлений, в частности интегрального представления Бохнера-Мартинелли.

    The problem of holomorphic extension of functions defined on the boundary of a domain into this domain is actual in multidimensional complex analysis. It has a long history, starting with the proceedings of Poincaré and Hartogs. This paper considers continuous functions defined on the boundary of a bounded domain $ D $ in $ \mathbb C ^ n $, $ n> 1 $, with piecewise-smooth boundary, and having the generalized boundary Morera property along the family of complex lines that intersect the boundary of a domain. Morera property is that the integral of a given function is equal to zero over the intersection of the boundary of the domain with the complex line. It is shown that such functions extend holomorphically to the domain $ D $. For functions of one complex variable, the Morera property obviously does not imply a holomorphic extension. Therefore, this problem should be considered only in the multidimensional case $ (n> 1) $. The main method for studying such functions is the method of multidimensional integral representations, in particular, the Bochner-Martinelli integral representation.

  8. Для управляемых систем со случайными параметрами исследуются свойства статистической инвариантности и статистически слабой инвариантности, выполненные с вероятностью единица. Получены достаточные условия инвариантности заданного множества относительно управляемой системы, выраженные в терминах функций Ляпунова и динамической системы сдвигов. Доказано обобщение теоремы С.А. Чаплыгина о дифференциальных неравенствах и получены условия существования верхнего решения для задачи Коши с кусочно непрерывной по t правой частью без предположения единственности решения.

    We investigate the properties of statistical invariance and statistically weak invariance with probability one for control systems with random parameters. We obtain the sufficient conditions for the invariance of the given set with respect to the control system formulated in terms of Lyapunov functions and the dynamical system of shifts. We prove the extension for the theorem of S.A. Chaplygin about differential inequalities and obtain the conditions of existence for the upper solution of Cauchy problem with piecewise continuous on t right-hand part without assumption of uniqueness of solution.

  9. Теория управления - активно развивающийся в настоящее время раздел современной математики. Класс задач, изучаемый в рамках этой теории, достаточно обширен и включает как вопросы, связанные с существованием решений, так и вопросы, связанные с эффективными способами построения управляющих воздействий. Один из подходов к решению задач управления при неполной информации был предложен в основополагающей статье Ю.С. Осипова, опубликованной в журнале «Успехи математических наук» в 2006 году. В дальнейшем этот подход, названный методом пакетов программ, получил развитие, в частности, в статьях, цитированных в настоящей работе. Указанный подход основан на подходящей модификации известного в теории позиционных дифференциальных игр метода неупреждающих стратегий (квазистратегий) для решения задач управления при неизвестном начальном состоянии. Как известно, квазистратегии, отражающие свойства вольтерровости программных реализаций управлений с обратной связью на соответствующие программные возмущения, ориентированы на исследование задач с известным начальным состоянием при наличии неизвестных динамических возмущений. В стандартных задачах управления с неполной информацией динамические возмущения, как правило, отсутствуют, а неполнота информации обусловлена дефицитом информации о начальном состоянии системы. Аналогом свойств неупреждаемости для задач с неизвестными начальными состояниями и стали пакеты программ. Следует отметить, что во всех предыдущих исследованиях, связанных с методом пакетов программ, рассматривались задачи наведения на одно-единственное целевое множество. В настоящей работе для линейной стационарной управляемой динамической системы рассмотрена задача гарантированного наведения на семейство целевых множеств в случае неполной информации о начальном состоянии. Установлен критерий разрешимости этой задачи, основанный на методе пакетов программ, и приведен иллюстрирующий пример.

    Control theory is a section of modern mathematics being actively developed at present time. The class of problems investigated within the framework of this theory is quite extensive and includes issues related to the existence of solutions as well as issues related to the effective methods for constructing controls. One of the approaches to solving control problems under lack of information was suggested by Yu.S. Osipov in the fundamental paper published in the Russian Mathematical Surveys in 2006. Later, this approach, called the method of program packages, was developed, in particular, in the articles cited in this paper. This approach is based on a suitable modification of the method of non-anticipatory strategies (quasi-strategies) for solving control problems with unknown initial states. As is known, quasi-strategies reflecting the Volterra properties of program realizations of closed-loop controls in corresponding program disturbances are oriented to the investigation of problems with known initial states under the presence of unknown dynamical disturbances. Such disturbances are usually absent in standard control problems with incomplete information and incompleteness of information is due to a lack of information about the initial state of the system. So, program packages became an analogue of the properties of nonanticipativeness for problems with unknown initial states. It should be noted that in all previous works related to the method of program packages, the guidance problems to one single target set were considered. In the present paper the guaranteed guidance problem to a collection of target sets under incomplete information about the initial state is considered for a linear autonomous control dynamical system. The criterion for the solvability of that problem is established. It is based on the method of program packages. An illustrative example is given.

  10. В этой работе решается проблема расширения группы параллельных переносов трехмерного пространства до локально ограниченно точно дважды транзитивной группы Ли преобразований того же пространства. Локальная ограниченная точная двойная транзитивность означает, что существует единственное преобразование, которое переводит произвольную пару несовпадающих точек из некоторой открытой окрестности почти в любую пару точек из той же окрестности. В данной статье поставленная задача решается для двух случаев, связанных с жордановыми формами матриц третьего порядка. С помощью этих матриц записываются системы линейных дифференциальных уравнений, решения которых приводят к базисным операторам шестимерного линейного пространства. Требуя замкнутость коммутаторов этих операторов, выделяем алгебры Ли. Проверяя также условие локальной ограниченной точно дважды транзитивности, мы получаем алгебры Ли локально ограниченно точно дважды транзитивных групп Ли преобразований трехмерного пространства с подгруппой параллельных переносов. В результате получены три алгебры Ли, две из которых представимы в виде полупрямой суммы коммутативного трехмерного идеала и трехмерной подалгебры Ли, а третья разлагается в полупрямую сумму коммутативного трехмерного идеала и подалгебры, изоморфной $sl(2,R)$.

    In this paper, we solve the problem of extending the group of parallel translations of a three-dimensional space to a locally boundedly sharply doubly transitive Lie group of transformations of the same space. Local bounded sharply double transitivity means that there is a single transformation that takes an arbitrary pair of non-coincident points from some open neighborhood to almost any pair of points from the same neighborhood. In this article, the problem posed is solved for two cases related to Jordan forms of third-order matrices. These matrices are used to write systems of linear differential equations, whose solutions lead to the basic operators of a six-dimensional linear space. Requiring the closedness of the commutators of these operators, we select the Lie algebras. Checking also the condition of local bounded sharply double transitivity, we obtain the Lie algebras of locally boundedly sharply doubly transitive Lie groups of transformations of a three-dimensional space with a subgroup of parallel translations. As a result, three Lie algebras are obtained, two of which can be represented as a half-line sum of a commutative three-dimensional ideal and a three-dimensional Lie subalgebra, and the third one decomposes into a half-line sum of a commutative three-dimensional ideal and a subalgebra isomorphic to $sl(2,R)$.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref