Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В прямоугольной области исследуются нелокальные краевые задачи для одномерного нестационарного уравнения конвекции-диффузии дробного порядка с переменными коэффициентами, описывающие диффузионный перенос той или иной субстанции, а также перенос, обусловленный движением среды. Методом энергетических неравенств выводятся априорные оценки решений нелокальных краевых задач в дифференциальной форме. Построены разностные схемы, и для них доказываются аналоги априорных оценок в разностной форме, приводятся оценки погрешности в предположении достаточной гладкости решений уравнений. Из полученных априорных оценок следуют единственность и устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью $O(h^2+\tau^2)$.
нелокальные краевые задачи, априорная оценка, нестационарное уравнение конвекции-диффузии, дифференциальное уравнение дробного порядка, дробная производная КапутоIn the rectangular region, we study nonlocal boundary value problems for the one-dimensional unsteady convection-diffusion equation of fractional order with variable coefficients, describing the diffusion transfer of a substance, as well as the transfer due to the motion of the medium. A priori estimates of solutions of nonlocal boundary value problems in differential form are derived by the method of energy inequalities. Difference schemes are constructed and analogs of a priori estimates in the difference form are proved for them, error estimates are given under the assumption of sufficient smoothness of solutions of equations. From the obtained a priori estimates, the uniqueness and stability of the solution from the initial data and the right part, as well as the convergence of the solution of the difference problem to the solution of the corresponding differential problem at the rate of $O(h^2+\tau^2)$.
-
Пусть $T\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, — гомеоморфизм окружности с одной точкой излома $x_{b}$, в которой $T'(x)$ имеет разрыв первого рода и обе односторонние производные в точке $x_{b}$ строго положительные, и иррациональным числом вращения $\rho _{T}$. Предположим, что разложение числа вращения $\rho _{T}$ в непрерывную дробь, начиная с некоторого номера, совпадает с золотым сечением, т.е. $\rho _{T}=[m_{1},m_{2},\dots,m_{l},\,m_{l+1},\ldots],…,m_{s}=1$, $s> l>0$. Поскольку число вращения иррациональное, отображение $T$ является строго эргодическим, т.е. обладает единственной вероятностной инвариантной мерой $\mu_{T}$. В работе А.А. Джалилова и К.М. Ханина доказано, что вероятностная инвариантная мера $\mu_{G}$ любого гомеоморфизма окружности $G\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одной точкой излома $ x_{b}$ и иррациональным числом вращения $\rho _{G}$ является сингулярной относительно меры Лебега $\lambda$ на окружности, т.е. существует измеримое подмножество $A \subset S^{1}$ такое, что $\mu_{G}(A)=1$ и $\lambda(A)=0$. Мы построим термодинамический формализм для гомеоморфизмов $T_{b}\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одним изломом в точке $x_{b}$ и числом вращения, равным золотому сечению, т.е. $\rho _{T}:=\frac{\sqrt{5}-1}{2}$. Существенно используя построенный термодинамический формализм, мы изучили показатели сингулярности инвариантной меры $\mu_{T}$ гомеоморфизма $T$.
гомеоморфизм окружности, точка излома, число вращения, инвариантная мера, термодинамический формализм
The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break, pp. 343-366Let $T \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, be a circle homeomorphism with one break point $x_{b}$, at which $ T'(x) $ has a discontinuity of the first kind and both one-sided derivatives at the point $x_{b} $ are strictly positive. Assume that the rotation number $\rho_{T}$ is irrational and its decomposition into a continued fraction beginning from a certain place coincides with the golden mean, i.e., $\rho_{T}=[m_{1}, m_{2}, \ldots, m_{l}, \, m_{l + 1}, \ldots] $, $ m_{s} = 1$, $s> l> 0$. Since the rotation number is irrational, the map $ T $ is strictly ergodic, that is, possesses a unique probability invariant measure $\mu_{T}$. A.A. Dzhalilov and K.M. Khanin proved that the probability invariant measure $ \mu_{G} $ of any circle homeomorphism $ G \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0$, with one break point $ x_{b} $ and the irrational rotation number $ \rho_{G} $ is singular with respect to the Lebesgue measure $ \lambda $ on the circle, i.e., there is a measurable subset of $ A \subset S^{1} $ such that $ \mu_ {G} (A) = 1 $ and $ \lambda (A) = 0$. We will construct a thermodynamic formalism for homeomorphisms $ T_{b} \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, with one break at the point $ x_{b} $ and rotation number equal to the golden mean, i.e., $ \rho_{T}:= \frac {\sqrt{5} -1}{2} $. Using the constructed thermodynamic formalism, we study the exponents of singularity of the invariant measure $ \mu_{T} $ of homeomorphism $ T $.
-
В статье исследуются прямая и обратная задачи для уравнений субдиффузии с участием дробной производной в смысле Хильфера. В качестве эллиптической части уравнения взят произвольный положительный самосопряженный оператор $A$. В частности, в качестве оператора $A$ можно взять оператор Лапласа с условием Дирихле. Сначала доказано существование и единственность решения прямой задачи. Затем с помощью представления решения прямой задачи доказывается существование и единственность обратной задачи нахождения правой части уравнения, зависящей только от пространственной переменной.
The article studies direct and inverse problems for subdiffusion equations involving a Hilfer fractional derivative. An arbitrary positive self-adjoint operator $A$ is taken as the elliptic part of the equation. In particular, as the operator $A$ we can take the Laplace operator with the Dirichlet condition. First, the existence and uniqueness of a solution to the direct problem is proven. Then, using the representation of the solution to the direct problem, the existence and uniqueness of the inverse problem of finding the right-hand side of the equation, which depends only on the spatial variable, is proved.
-
Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.
Evasion from pursuers in a problem of group pursuit with fractional derivatives and phase constraints, pp. 309-314The paper deals with the problem of avoiding a group of pursuers in the finite-dimensional Euclidean space. The motion is described by the linear system of fractional order $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ where ${}^C D^{\alpha}_{0+}f$ is the Caputo derivative of order $\alpha\in(0,1)$ of the function $f$ and $A$ is a simple matrix. The initial positions are given at the initial time. The set of admissible controls of all players is a convex compact. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the evasion problem are obtained.
-
Работа посвящена построению приближенных решений краевых задач в прямоугольнике для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя, выступающих в качестве математических моделей движения влаги и солей в почвах с фрактальной организацией. Построены разностные схемы для дифференциальных задач. Методом энергетических неравенств выведены априорные оценки решений рассматриваемых задач в дифференциальной и разностной трактовках. Из полученных априорных оценок следуют единственность, устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью, равной порядку погрешности аппроксимации. Построен алгоритм численного решения разностных схем, полученных при аппроксимации краевых задач для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя. Проведены численные эксперименты, иллюстрирующие полученные в работе теоретические выкладки.
краевые задачи, априорная оценка, нагруженные уравнения, разностная схема, псевдопараболическое уравнение, уравнение влагопереноса, уравнение Аллера, дробная производная КапутоThe paper is devoted to the construction of approximate solutions of boundary value problems in a rectangle for a loaded modified fractional-order moisture transfer equation with the Bessel operator, which act as mathematical models of the movement of moisture and salts in soils with fractal organization. Difference schemes for differential problems are constructed. The method of energy inequalities is used to derive a priori estimates of solutions to the problems under consideration in differential and difference interpretations. The obtained a priori estimates are followed by uniqueness, stability of the solution from the initial data and the right part, as well as convergence of the solution of the difference problem to the solution of the corresponding differential problem with a speed equal to the order of approximation error. An algorithm for the numerical solution of difference schemes obtained by approximating boundary value problems for a loaded modified fractional-order moisture transfer equation with the Bessel operator is constructed.
-
Численно-аналитический метод решения краевой задачи для обобщенных уравнений влагопереноса, с. 19-34Работа посвящена рассмотрению качественно новых уравнений влагопереноса, которые являются обобщением уравнения Аллера и уравнения Аллера-Лыкова. Данное обобщение дает возможность отражения в характере исходных уравнений специфических особенностей изучаемых массивов, их структуры, физических свойств, протекающих в них процессов посредством введения понятия фрактальной скорости изменения влажности. Для этих уравнений с дробной по времени производной Римана-Лиувилля с краевыми условиями первого рода получены решения системы разностных уравнений с постоянными коэффициентами, возникающих при использовании метода прямых. Получены априорные оценки, из которых следует сходимость решений систем обыкновенных дифференциальных уравнений с переменными коэффициентами дробного порядка. На тестовых примерах проведены численные эксперименты, подтверждающие теоретические результаты, полученные в работе.
обобщенное уравнение влагопереноса Аллера, уравнение Аллера-Лыкова, производная дробного порядка, метод прямых, априорная оценкаThe paper studies qualitatively new equations of moisture transfer, which generalize the Aller and Aller-Lykov equations. The generalization contributes to revealing in the original equations the specific features of the studied massifs, their structure, physical properties, processes occurring in them through the introduction of the notion of the rates of change of the fractal dimension. We have obtained solutions to the constant coefficient difference equations as a system arising when using the method of lines for the equations with a Riemann-Liouville time fractional derivative with boundary conditions of the first kind. A priori estimates are obtained that imply convergence of the obtained solutions to systems of ordinary differential equations with variable fractional coefficients. Numerical tests have been carried out to confirm theoretical results of the study.
-
В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.
уравнение дробного порядка, прямая задача, обратная задача, метод Фурье, функция Миттаг–Леффлера, преобразование Лапласа, существование, единственностьThis work studies direct initial boundary value and inverse coefficient determination problems for a one-dimensional partial differential equation with multi-term orders fractional Riemann–Liouville derivatives. The unique solvability of the direct problem is investigated and a priori estimates for its solution are obtained in weighted spaces, which will be used for studying the inverse problem. Then, the inverse problem is equivalently reduced to a nonlinear integral equation. The fixed-point principle is used to prove the unique solvability of this equation.
-
Приближение обыкновенных дробно-дифференциальных уравнений дифференциальными уравнениями с малым параметром, с. 515-531В работе предложен подход к аппроксимации обыкновенных дифференциальных уравнений с производными дробного порядка (так называемых дробно-дифференциальных уравнений) дифференциальными уравнениями с производными целого порядка в предположении, что порядок дробного дифференцирования близок к целому числу. Для дробных производных Римана-Лиувилля и Капуто получены разложения по малому параметру, выделяемому из порядка дробного дифференцирования. При этом первый порядок разложения представляется через бесконечный ряд и зависит от производных всех целых порядков. Полученные разложения позволяют приблизить обыкновенные дифференциальные уравнения с производными дробных порядков этого типа обыкновенными дифференциальными уравнениями с малым параметром. Доказано, что для дробно-дифференциальных уравнений, принадлежащих определенному классу, соответствующие приближенные уравнения будут содержать только производные конечного целого порядка. Приближенные решения таких уравнений могут быть найдены с использованием известных методов возмущений. Предлагаемый подход иллюстрируется рядом примеров.
Approximation of ordinary fractional differential equations by differential equations with a small parameter, pp. 515-531An approach to approximation of ordinary fractional differential equations by integer-order differential equations is proposed. It is assumed that the order of fractional differentiation is close to integer. Perturbation expansions for the Riemann-Liouville and Caputo fractional derivatives are derived in terms of a suitable small parameter extracted from the order of fractional differentiation. The first-order term of these expansions is represented by series depending on integer-order derivatives of all integer orders. The expansions obtained permit one to approximate ordinary fractional differential equations, involving such types of fractional derivatives, by integer-order differential equations with a small parameter. It is proved that, for fractional differential equations belonging to a certain class, corresponding approximate equations contain only a finite number of integer-order derivatives. Approximate solutions to such equations can be obtained using well-known perturbation techniques. The proposed approach is illustrated by several examples.
-
В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$D^{(\alpha)}z_i = a z_i + u_i - v,$$ где $D^{(\alpha)}f$ - производная по Капуто порядка $\alpha \in (0, 1)$ функции $f$. Дополнительно предполагается, что убегающий в процессе игры не покидает пределы выпуклого многогранного множества с непустой внутренностью. Убегающий использует кусочно-программные стратегии, преследователи - кусочно-программные контрстратегии. Множество допустимых управлений - выпуклый компакт, целевые множества - начало координат, $a$ - вещественное число. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи преследования.
In the finite-dimensional Euclidean space, we consider the problem of persecution of one evader by the group of pursuers, which is described by the system $$D^{(\alpha)}z_i = a z_i + u_i - v,$$ where $D^{(\alpha)}f$ is the Caputo derivative of order $\alpha \in (0, 1)$ of the function $f$. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. The evader uses piecewise-program strategies, and the pursuers use piecewise-program counterstrategies. The set of admissible controls is a convex compact, the target sets are the origin of coordinates, and $a$ is a real number. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the pursuit problem are obtained.
-
В настоящей статье рассматривается краевая задача для дифференциальных уравнений типа Ланжевена с дробной производной Капуто в банаховом пространстве. Предполагается, что нелинейная часть уравнения представляет из себя отображение, подчиняющееся условиям типа Каратеодори. Уравнения такого типа обобщают уравнения движения в различного рода средах, например вязкоупругих, или в средах, где сила сопротивления выражается с помощью дробной производной. Для разрешения поставленной задачи будет использоваться теория дробного математического анализа, свойства функции Миттаг-Леффлера, а также теория мер некомпактности и уплотняющих операторов. Идея решения состоит в следующем: исходная задача сводится к задаче о существовании неподвижных точек соответствующего разрешающего интегрального оператора в пространстве непрерывных функций. Для доказательства существования неподвижных точек разрешающего оператора используется теорема типа Б.Н. Садовского о неподвижной точке. Для этого мы показываем, что разрешающий интегральный оператор является уплотняющим относительно векторной меры некомпактности в пространстве непрерывных функций и преобразует замкнутый шар в этом пространстве в себя.
дробная производная Капуто, дифференциальное уравнение типа Ланжевена, краевая задача, неподвижная точка, уплотняющее отображение, мера некомпактности, функция Миттаг-Леффлера
On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space, pp. 415-432In this paper, we consider a boundary value problem for differential equations of Langevin type with the Caputo fractional derivative in a Banach space. It is assumed that the nonlinear part of the equation is a Caratheodory type map. Equations of this type generalize equations of motion in various kinds of media, for example, viscoelastic media or in media where a drag force is expressed using a fractional derivative. We will use the theory of fractional mathematical analysis, the properties of the Mittag-Leffler function, as well as the theory of measures of non-compactness and condensing operators to solve the problem. The initial problem is reduced to the problem of the existence of fixed points of the corresponding resolving integral operator in the space of continuous functions. We will use Sadovskii type fixed point theorem to prove the existence of fixed points of the resolving operator. We will show that the resolving integral operator is condensing with respect to the vector measure of non-compactness in the space of continuous functions and transforms a closed ball in this space into itself.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.