Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'functional constraints':
Найдено статей: 33
  1. Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.

    A convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.

  2. Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.

    The paper deals with the problem of avoiding a group of pursuers in the finite-dimensional Euclidean space. The motion is described by the linear system of fractional order $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ where ${}^C D^{\alpha}_{0+}f$ is the Caputo derivative of order $\alpha\in(0,1)$ of the function $f$ and $A$ is a simple matrix. The initial positions are given at the initial time. The set of admissible controls of all players is a convex compact. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the evasion problem are obtained.

  3. Для динамической системы, управляемой в условиях помех, рассматривается задача оптимизации гарантированного результата. Особенностью задачи является наличие функциональных ограничений на помехи, при которых свойство замкнутости множества допустимых помех относительно операции «склейки» двух его элементов, вообще говоря, отсутствует. Это обстоятельство препятствует непосредственному применению методов теории дифференциальных игр для исследования задачи и тем самым приводит к необходимости их походящей модификации. В работе предложено новое понятие неупреждающей стратегии управления (квазистратегии). Доказано, что соответствующий функционал оптимального гарантированного результата удовлетворяет принципу динамического программирования. Как следствие, установлены так называемые свойства $u$- и $v$-стабильности этого функционала, которые в дальнейшем позволят построить конструктивное решение задачи в позиционных стратегиях.

    For a dynamical system controlled under conditions of disturbances, a problem of optimizing the guaranteed result is considered. A feature of the problem is the presence of functional constraints on disturbances, under which, in general, the set of admissible disturbances is not closed with respect to the operation of “gluing up” of two of its elements. This circumstance does not allow to apply directly the methods developed within the differential games theory for studying the problem and, thus, leads to the necessity of modifying them appropriately. The paper provides a new notion of a non-anticipative control strategy. It is proved that the corresponding functional of the optimal guaranteed result satisfies the dynamic programming principle. As a consequence, so-called properties of $u$- and $v$-stability of this functional are established, which may allow, in the future, to obtain a constructive solution of the problem in the form of feedback (positional) controls.

  4. В статье рассматривается аппроксимация функции цены антагонистической дифференциальной игры с критерием, задаваемым условием минимизации некоторой величины вдоль реализовавшейся траектории, решениями стохастических игр с непрерывным временем и моментом остановки, управляемым одним из игроков. Отметим, что если в качестве вспомогательной игры выбрана стохастическая дифференциальная игра, то ее функция цены задается параболическим уравнением второй степени в частных производных с дополнительными ограничениями в форме неравенств, в то время как для случая вспомогательной игры с динамикой, задаваемой марковской цепью, функция цены определяется системой обыкновенных дифференциальных уравнений с дополнительными ограничениями. Развиваемый в статье метод аппроксимации основан на концепции стохастического поводыря, впервые предложенном в работах Н.Н. Красовского и А.Н. Котельниковой.

    The paper is concerned with the approximation of the value function of the zero-sum differential game with the minimal cost, i.e., the differential game with the payoff functional determined by the minimization of some quantity along the trajectory by the solutions of continuous-time stochastic games with the stopping governed by one player. Notice that the value function of the auxiliary continuous-time stochastic game is described by the Isaacs–Bellman equation with additional inequality constraints. The Isaacs–Bellman equation is a parabolic PDE for the case of stochastic differential game and it takes a form of system of ODEs for the case of continuous-time Markov game. The approximation developed in the paper is based on the concept of the stochastic guide first proposed by Krasovskii and Kotelnikova.

  5. Для задачи оптимального управления системой обыкновенных дифференциальных уравнений с поточечным фазовым ограничением типа равенства и конечным числом функциональных ограничений типа равенства и неравенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собою регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации.

    The stable sequential Pontryagin maximum principle or, in other words, the regularized Pontryagin maximum principle in iterative form is formulated for the optimal control problem of a system of ordinary differential equations with pointwise phase equality constraint and a finite number of functional equality and inequality constraints. The main difference between it and the classical Pontryagin maximum principle is that, firstly, it is formulated in terms of minimizing sequences, secondly, the iterative process occurs in dual space and, thirdly, it is resistant to errors of raw data and gives a minimizing approximate solution in the sense of J. Warga. So it is a regularizing algorithm. The proof of the regularized Pontryagin maximum principle in iterative form is based on the methods of dual regularization and iterative dual regularization.

  6. В статье рассматривается экстремальная задача маршрутизации с ограничениями. В общей формулировке предполагается, что объектами посещения являются любые непустые конечные множества — мегаполисы. Основной прикладной задачей, рассматриваемой в данном исследовании, является задача оптимизации траектории движения инструмента для станков листовой резки с ЧПУ, известная как проблема пути резания. Эта проблема возникает на этапе разработки управляющих программ для станков с ЧПУ. Возможны и другие приложения. В частности, результаты исследования могут быть использованы в задаче минимизация дозы облучения при демонтаже системы радиационно-опасных элементов после аварий на АЭС и в транспортных проблемах. В качестве ограничений исследуются ограничения предшествования. Они могут быть использованы для уменьшения вычислительной сложности. В качестве основного метода исследования использовалось широко понимаемое динамическое программирование. Предлагаемая реализация метода учитывает ограничения предшествования и зависимость целевых функций от списка задач. Последняя относится к классу очень сложных состояний, которые определяют допустимость маршрута на каждом шаге маршрутизации, в зависимости от уже выполненных или, наоборот, еще не завершенных задач. Применительно к задаче резки зависимость целевой функции от списка задач позволяет уменьшать термические деформации материала при резке. В работе математическая формализация экстремальной задачи маршрутизации с дополнительными ограничениями, описание метода и полученный с его помощью точный алгоритм. Оптимизации подлежат порядок выполнения задач, конкретная траектория процесса, и его начальная точка.

    Petunin A.A., Chentsov A.G., Chentsov P.A.
    Some applications of optimization routing problems with additional constraints, pp. 187-210

    The paper deals with an extremal routing problem with constraints. In the general formulation, it is assumed that the objects of visiting are any non-empty finite sets — megalopolises. The main applied problem considered in this study is the tool path optimization problem for CNC sheet-cutting machines, known as the Cutting Path Problem. This problem arises at the stage of developing control programs for CNC machines. Other applications are also possible. In particular, the results obtained in the chapter can be used in the problem of minimizing the radiation dose when dismantling a system of radiation-hazardous elements after accidents at nuclear power plants and in transport problems. Among tasks constraints, the precedence constraints are investigated. These constraints can be used to reduce computational complexity. As the main method, the study used broadly understood dynamic programming. The offered realization of the method takes into account the precedence constraints and the dependence of the objective functions on the task list. This dependence belongs to the class of very complex conditions that determine the route admissibility at each routing step, depending on the tasks already completed or, on the contrary, not yet completed. As applied to the Cutting Path Problem, the dependence of the objective function on the task list makes it possible to reduce thermal deformations of the material during cutting. The chapter provides a mathematical formalization of an extremal routing problem with additional constraints, a description of the method, and the exact algorithm obtained with its help. The order of task execution, the specific trajectory of the process, and the starting point are optimized.

  7. Рассматриваются вопросы, связанные с решением аддитивной задачи последовательного обхода множеств с ограничениями предшествования и функциями стоимости, допускающими зависимость от списка заданий. В качестве базового метода используется широко понимаемое динамическое программирование (ДП), дополняемое в случае задач ощутимой размерности декомпозициями семейства заданий и преобразованием параметров исходной задачи. Возможные применения связаны, в частности, с задачей управления инструментом при фигурной листовой резке деталей на машинах с ЧПУ. В этой задаче важным обстоятельством является учет условий предшествования, имеющих, в частности, следующий смысл: в случае детали с отверстиями резка каждого из внутренних контуров (отвечающих отверстиям) должна предшествовать резке внешнего контура. Сам критерий качества в данной задаче, как правило, является аддитивным. Другой тип ограничений касается избежания термических деформаций деталей. При использовании подхода с применением штрафов за нарушение условий, связанных с эффективным отводом тепла при выполнении врезки, возникают функции стоимости, допускающие зависимость от списка заданий, выполненных на текущий момент времени. Заметим, что в другой прикладной задаче, а именно в задаче о демонтаже радиационно опасных объектов, возникают функции стоимости с зависимостью от списка заданий, не выполненных на данный момент (а, следовательно, касающихся недемонтированных объектов). В итоге мы приходим к очень общей задаче с ограничениями предшествования и функциями стоимости с зависимостью от списка заданий. Применяемая в случае ощутимой размерности декомпозиция с последующей реализацией ДП требует, с одной стороны, разработки методов кластеризации, а, с другой, построения адекватной конструкции распределения глобальных условий предшествования по кластерам. В теоретической части работы обсуждается случай двух кластеров, который позволяет охватить единой схемой целый ряд практически интересных задач диапазонного (в смысле размерности) типа. Указан алгоритм построения композиционного решения, включающий этап обучения кластеризации на основе жадного алгоритма. Данный «композиционный» алгоритм реализован на ПЭВМ; проведен вычислительный эксперимент.

    Issues related to solving the additive problem of sequential traversal of sets with precedence restrictions and cost functions that allow dependence on the list of tasks are considered. The basic method is a broadly understood dynamic programming (DP), supplemented in the case of problems of appreciable dimension by decompositions of the family of tasks and transformation of the parameters of the original problem. Possible applications are related, in particular, to the problem of tool control in figured sheet cutting of parts on CNC machines. In this problem, an important circumstance is taking into account the precedence conditions, which have, in particular, the following meaning: in the case of a part with holes, cutting of each of the internal contours (corresponding to the holes) should precede cutting of the external contour. The quality criterion itself in this problem, as a rule, is additive. Another type of constraints concerns avoiding thermal deformations of parts. When using the approach with penalties for violating the conditions associated with effective heat dissipation during cutting, cost functions arise that allow dependence on the list of tasks completed to date. Note that in another applied problem, namely, in the problem of dismantling radiation hazardous objects, cost functions arise with dependence on the list of tasks that have not been completed at the moment (and, consequently, concern the objects that have not been dismantled). As a result, we arrive at a very general problem with precedence constraints and cost functions with dependence on the list of tasks. The decomposition applied in the case of a noticeable dimensionality with subsequent implementation of the DP requires, on the one hand, the development of clustering methods, and, on the other, the construction of an adequate structure for distributing global precedence conditions among clusters. In the theoretical part of the work, the case of two clusters is discussed, which makes it possible to cover with a single scheme a number of practically interesting problems of a range (in terms of dimensionality) type. An algorithm for constructing a composite solution is indicated, including a stage of clustering training based on a greedy algorithm. This “composite” algorithm is implemented on a PC; a computational experiment was carried out.

  8. Сформулированы теоремы о существовании решений, оценках решений и корректной разрешимости уравнений с накрывающими отображениями в произведении метрических пространств. Рассмотрены условия накрывания оператора Немыцкого в функциональных пространствах. Утверждения о накрывающих отображениях применяются к исследованию управляемых систем, описываемых обыкновенными дифференциальными уравнениями, не разрешенными относительно производной искомой функции. Получены условия существования решений и их оценки, а также исследован вопрос непрерывной зависимости решений от параметров управляемых систем дифференциальных уравнений со смешанными ограничениями на управление и дополнительным ограничением на производную решения.

    Theorems on solvability, estimates of solutions, and well-posed solvability of equations with covering mappings in the product of metric spaces are formulated. Conditions for the Nemytskii operator to be a covering operator in functional spaces are considered. Statements about covering mappings are applied to studying the controlled systems described by ordinary differential equations unsolved for the derivative. For controlled differential systems with mixed constraints on control and an additional constraint on the solution's derivative, conditions of solvability are received as well as solutions' estimates, the question of continuous dependence of solutions on parameters is investigated.

  9. Рассматривается линейная дифференциальная игра с заданным моментом окончания $p$. Множества достижимости игроков являются $n$-мерными шарами. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Тот факт, что терминальное множество не является выпуклым, потребовал привлечения дополнительной теории, позволяющей находить сумму и разность Минковского для кольца и шара в $n$-мерном пространстве. На выбор управления первого игрока накладывается импульсное ограничение. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым усложняя задачу. Управление второго игрока стеснено геометрическими ограничениями. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. Построен максимальный стабильный мост, ведущий в заданный момент времени на терминальное множество. Стабильный мост определяется функциями внешнего и внутреннего радиусов, которые вычислены в явном виде.

    We consider a linear differential game with the fixed end time $p$. Attainability domains of players are $n$-dimensional balls. The terminal set of a game is determined by a condition for assigning the norm of a phase vector to a segment with positive ends. A set defined by this condition is named in the article as ring. The fact that the terminal set is not convex required an additional theory allowing us to calculate Minkowski sum and difference for a ring and a ball in $n$-dimensional space. Control of the first player has a pulse constraint. Abilities of the first player are determined by the stock of resources that can be used by the player at formation of his control. At certain moments of time the separation of a part of the resources stock is possible, which may implicate an “instantaneous” change of a phase vector, thereby complicating the problem. Control of the second player has geometrical constraints. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is opposite. The maximal stable bridge leading at fixed time to the terminal set has been constructed. A stable bridge is determined by the functions of internal and external radii, which are calculated explicitly.

  10. В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$D^{(\alpha)}z_i = a z_i + u_i - v,$$ где $D^{(\alpha)}f$ - производная по Капуто порядка $\alpha \in (0, 1)$ функции $f$. Дополнительно предполагается, что убегающий в процессе игры не покидает пределы выпуклого многогранного множества с непустой внутренностью. Убегающий использует кусочно-программные стратегии, преследователи - кусочно-программные контрстратегии. Множество допустимых управлений - выпуклый компакт, целевые множества - начало координат, $a$ - вещественное число. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи преследования.

    In the finite-dimensional Euclidean space, we consider the problem of persecution of one evader by the group of pursuers, which is described by the system $$D^{(\alpha)}z_i = a z_i + u_i - v,$$ where $D^{(\alpha)}f$ is the Caputo derivative of order $\alpha \in (0, 1)$ of the function $f$. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. The evader uses piecewise-program strategies, and the pursuers use piecewise-program counterstrategies. The set of admissible controls is a convex compact, the target sets are the origin of coordinates, and $a$ is a real number. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the pursuit problem are obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref