Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'game theory':
Найдено статей: 13
  1. Жуковский В.И., Кудрявцев К.Н., Горбатов А.С.
    Равновесие по Бержу в модели олигополии Курно, с. 147-156

    В работе построено равновесие по Бержу в модели олигополии Курно. Проведено сравнение равновесий по Бержу и по Нэшу. Выявлены условия, при которых выигрыши игроков в ситуации равновесия по Бержу больше, чем их выигрыши в ситуации равновесия по Нэшу.

    Zhukovskii V.I., Kudryavtsev K.N., Gorbatov A.S.
    The Berge equilibrium in Cournot's model of oligopoly, pp. 147-156

    In many large areas of the economy (such as metallurgy, oil production and refining, electronics), the main competition takes place among several companies that dominate the market. The first models of such markets - oligopolies were described more than a hundred years ago in articles by Cournot, Bertrand, Hotelling. Modeling of oligopolies continues in many modern works. Moreover, in 2014 Nobel Prize in Economics “for his analysis of market power and regulation in sectors with few large companies” was received by Jean Tirole - the author of one of the best modern textbooks on the theory of imperfect competition “The Theory of Industrial Organization”. The main idea of all these publications, studying the behavior of oligopolies, is that every company is primarily concerned with its profits. This approach meets the concept of Nash equilibrium and is actively used in modeling the behavior of players in a competitive market. The exact opposite of such “selfish” equilibrium is “altruistic” concept of Berge equilibrium. In this approach, each player, without having to worry about himself, choose his actions (strategies) trying to maximize the profits of all other market participants. This concept called Berge equilibrium appeared in Russia in 1994 in reference to the France Claude Berge monograph published in 1957. The first works on the concept of Berge equilibrium belong to K.S. Vaisman and V.I. Zhukovskii. Once outside Russia, the concept of “Berge equilibrium” is slowly gaining popularity. To day, the number of publications related to this balance is already measured in tens. However, all of these items are limited to purely theoretical issues, or, in general, to psychology applications. Works devoted to the study of Berge equilibrium in economic problems, were not seen until now. It's probably a consequence of Martin Shubik's review (“… no attention is paid to the application to the economy. … the book is of little interest for economists”) of the Berge's book, it “scared” economists for a long time. However, it is not so simple. In this article, Berge equilibrium is considered in Cournot oligopoly, its relation to Nash equilibrium is studied. Cases are revealed in which players gain more profit by following the concept of Berge equilibrium, than by using strategies dictated by Nash equilibrium.

  2. Для динамической системы, управляемой в условиях помех, рассматривается задача оптимизации гарантированного результата. Особенностью задачи является наличие функциональных ограничений на помехи, при которых свойство замкнутости множества допустимых помех относительно операции «склейки» двух его элементов, вообще говоря, отсутствует. Это обстоятельство препятствует непосредственному применению методов теории дифференциальных игр для исследования задачи и тем самым приводит к необходимости их походящей модификации. В работе предложено новое понятие неупреждающей стратегии управления (квазистратегии). Доказано, что соответствующий функционал оптимального гарантированного результата удовлетворяет принципу динамического программирования. Как следствие, установлены так называемые свойства $u$- и $v$-стабильности этого функционала, которые в дальнейшем позволят построить конструктивное решение задачи в позиционных стратегиях.

    For a dynamical system controlled under conditions of disturbances, a problem of optimizing the guaranteed result is considered. A feature of the problem is the presence of functional constraints on disturbances, under which, in general, the set of admissible disturbances is not closed with respect to the operation of “gluing up” of two of its elements. This circumstance does not allow to apply directly the methods developed within the differential games theory for studying the problem and, thus, leads to the necessity of modifying them appropriately. The paper provides a new notion of a non-anticipative control strategy. It is proved that the corresponding functional of the optimal guaranteed result satisfies the dynamic programming principle. As a consequence, so-called properties of $u$- and $v$-stability of this functional are established, which may allow, in the future, to obtain a constructive solution of the problem in the form of feedback (positional) controls.

  3. В качестве математической модели конфликта рассматривается бескоалиционная игра Γ двух участников при неопределенности. О неопределенности известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют. Для оценки риска в Γ привлекается функция риска по Сэвиджу (из принципа минимаксного сожаления). Качество функционирования участников конфликта оценивается по двум критериям - исходам и рискам, при этом каждый из них стремится увеличить исход и одновременно уменьшить риск. На основе синтеза принципов минимаксного сожаления и гарантированного результата, равновесности по Нэшу и оптимальности по Слейтеру, а также решения иерархической двухуровневой игры по Штакельбергу формализуется понятие гарантированного по исходам (выигрышам) и рискам равновесия в Γ. Приведен пример. Затем устанавливается существование такого решения в смешанных стратегиях при обычных ограничениях в математической теории игр.

    Zhukovskii V.I., Soldatova N.G.
    Method of settlement of conflicts under uncertainty, pp. 28-33

    As a mathematical model of conflict the non-cooperation game Γ of two players under uncertainty is considered. About uncertainty only the limits of change are known. Any characteristics of probability are absent. To estimate risk in Γ we use Savage functions of risk (from principle of minimax regret). The quality of functioning of conflict's participants is estimated according to two criteria: outcomes and risks, at that each of the participants tries to increase the outcome and simultaneously to decrease the risk. On the basis of synthesis of principles of minimax regret and guaranteed result, Nash equilibrium and Slater optimality as well as solution of the two-level hierarchical Stackelberg game, the notion of guaranteed equilibrium in Γ (outcomes (prize) and risks) is formalized. We give the example. Then the existence of such a solution in mixed strategies at usual limits in mathematical game theory is established.

  4. В работе рассматриваются динамические биматричные игры с интегральными показателями, дисконтированными на бесконечном интервале времени. Динамика системы задается дифференциальными уравнениями, описывающими изменение поведения игроков в зависимости от поступающих сигналов управления. Рассматривается задача построения равновесных траекторий в рамках минимаксного подхода, предложенного Н.Н. Красовским и А.И. Субботиным в теории дифференциальных игр. Используется конструкция динамического равновесия по Нэшу, которая развита в работах А.Ф. Клейменова. Для синтеза оптимальных стратегий управления применяется принцип максимума Л.С. Понтрягина в сочетании с методом характеристик для уравнений Гамильтона-Якоби. Получены аналитические формулы для кривых переключения оптимальных стратегий управления. Проведен анализ чувствительности равновесных решений в зависимости от параметра дисконтирования в интегральных функционалах выигрыша. Установлена асимптотическая сходимость равновесных траекторий по параметру дисконтирования к решению динамической биматричной игры со среднеинтегральными функционалами выигрыша, которые исследовались в работах В.И. Арнольда. Рассмотрено приложение полученных результатов к динамической модели инвестирования на финансовых рынках.

    The paper is devoted to the analysis of dynamical bimatrix games with integral indices discounted on an infinite time interval. The system dynamics is described by differential equations in which players' behavior changes according to incoming control signals. For this game, a problem of construction of equilibrium trajectories is considered in the framework of minimax approach proposed by N.N. Krasovskii and A.I. Subbotin in the differential games theory. The game solution is based on the structure of dynamical Nash equilibrium developed in papers by A.F. Kleimenov. The maximum principle of L.S. Pontryagin in combination with the method of characteristics for Hamilton-Jacobi equations are applied for the synthesis of optimal control strategies. These methods provide analytical formulas for switching curves of optimal control strategies. The sensitivity analysis for equilibrium solutions is implemented with respect to the discount parameter in the integral payoff functional. It is shown that equilibrium trajectories in the problem with the discounted payoff functional asymptotically converge to the solution of a dynamical bimatrix game with average integral payoff functionals examined in papers by V.I. Arnold. Obtained results are applied to a dynamical model of investments on financial markets.

  5. Изучается задача, относящаяся к оценке хаусдорфова отклонения выпуклых многоугольников в $\mathbb{R}^2$ от их геометрической разности с кругами достаточно малого радиуса. Задачи с такой тематикой, в которых рассматриваются не только выпуклые многоугольники, но и выпуклые компакты в евклидовом пространстве $\mathbb{R}^n$, возникают в различных областях математики и, в частности, в теории дифференциальных игр, теории управления, выпуклом анализе. Оценки хаусдорфовых отклонений выпуклых компактов в $\mathbb{R}^n$ от их геометрической разности с замкнутыми шарами в $\mathbb{R}^n$ присутствуют в работах Л.С. Понтрягина, его сотрудников и коллег. Эти оценки весьма существенны при выводе оценки рассогласования альтернированного интеграла Л. С. Понтрягина в линейных дифференциальных играх преследования и альтернированных сумм. Аналогичные оценки оказываются полезными при выводе оценки рассогласования множеств достижимости нелинейных управляемых систем в $\mathbb{R}^n$ и аппроксимирующих их множеств. В работе рассмотрен конкретный выпуклый семиугольник в $\mathbb{R}^2$. Для изучения геометрии этого семиугольника вводится понятие клина в $\mathbb{R}^2$. На базе этого понятия получена верхняя оценка величины хаусдорфова отклонения семиугольника от его геометрической разности с кругом в $\mathbb{R}^2$ достаточно малого радиуса.

    We study a problem concerning the estimation of the Hausdorff deviation of convex polygons in $\mathbb R^2$ from their geometric difference with circles of sufficiently small radius. Problems with such a subject, in which not only convex polygons but also convex compacts in the Euclidean space $\mathbb R^n$ are considered, arise in various fields of mathematics and, in particular, in the theory of differential games, control theory, convex analysis. Estimates of Hausdorff deviations of convex compact sets in $\mathbb R^n$ in their geometric difference with closed balls in $\mathbb R^n$ are presented in the works of L.S. Pontryagin, his staff and colleagues. These estimates are very important in deriving an estimate for the mismatch of the alternating Pontryagin’s integral in linear differential games of pursuit and alternating sums. Similar estimates turn out to be useful in deriving an estimate for the mismatch of the attainability sets of nonlinear control systems in $\mathbb R^n$ and the sets approximating them. The paper considers a specific convex heptagon in $\mathbb R^2$. To study the geometry of this heptagon, we introduce the concept of a wedge in $\mathbb R^2$. On the basis of this notion, we obtain an upper bound for the Hausdorff deviation of a heptagon from its geometric difference with the disc in $\mathbb R^2$ of sufficiently small radius.

  6. Рассматривается линейная дифференциальная игра с заданным моментом окончания $p$. Множества достижимости игроков являются $n$-мерными шарами. Терминальное множество в игре определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Тот факт, что терминальное множество не является выпуклым, потребовал привлечения дополнительной теории, позволяющей находить сумму и разность Минковского для кольца и шара в $n$-мерном пространстве. На выбор управления первого игрока накладывается импульсное ограничение. Возможности первого игрока определяются запасом ресурсов, который он может использовать при формировании своего управления. В отдельные моменты времени возможно отделение части запаса ресурсов, что может привести к «мгновенному» изменению фазового вектора, тем самым усложняя задачу. Управление второго игрока стеснено геометрическими ограничениями. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. Построен максимальный стабильный мост, ведущий в заданный момент времени на терминальное множество. Стабильный мост определяется функциями внешнего и внутреннего радиусов, которые вычислены в явном виде.

    We consider a linear differential game with the fixed end time $p$. Attainability domains of players are $n$-dimensional balls. The terminal set of a game is determined by a condition for assigning the norm of a phase vector to a segment with positive ends. A set defined by this condition is named in the article as ring. The fact that the terminal set is not convex required an additional theory allowing us to calculate Minkowski sum and difference for a ring and a ball in $n$-dimensional space. Control of the first player has a pulse constraint. Abilities of the first player are determined by the stock of resources that can be used by the player at formation of his control. At certain moments of time the separation of a part of the resources stock is possible, which may implicate an “instantaneous” change of a phase vector, thereby complicating the problem. Control of the second player has geometrical constraints. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is opposite. The maximal stable bridge leading at fixed time to the terminal set has been constructed. A stable bridge is determined by the functions of internal and external radii, which are calculated explicitly.

  7. Метод малого параметра Пуанкаре активно применяется в небесной механике, а также в теории дифференциальных уравнений и в ее важном разделе — оптимальном управлении. В предлагаемой статье данный метод используется для построения явного вида равновесия по Нэшу и Бержу в дифференциальной позиционной игре с малым влиянием одного из игроков на скорость изменения фазового вектора.

    The Poincaré small parameter method is actively used in celestial mechanics, as well as in the theory of differential equations and in its important section called optimal control. In this paper, the mentioned method is used to construct an explicit form of Nash and Berge equilibrium in a differential positional game with a small influence of one of the players on the rate of change of the state vector.

  8. В теории игр и теории исследования операций часто появляется минимакс от функции $f(x,y)$, зависящей от двух векторных переменных $x$, $y$. Изучению свойств минимакса (или максимина) посвящено много работ. Минимакс можно трактовать как наименьший гарантированный результат для минимизирующего игрока (минимизирующей оперирующей стороны). При изучении минимаксных задач определенный интерес представляют различные вопросы о корректности. Одному из таких вопросов посвящена настоящая статья. В ней векторы $x$, $y$ принадлежат компактам $P$, $Q$ из соответствующих евклидовых пространств $R^k$, $R^l$, а функция $f(x,y)$ непрерывна на произведении пространств $R^k\times R^l$. В статье рассматривается вопрос о зависимости минимакса от малых изменений компактов $P$, $Q$ в метрике Хаусдорфа. Обосновывается непрерывность зависимости минимакса от малых вариаций множеств $P$, $Q$.

    Nikol'skii M.S.
    On one correctness problem for minimax, pp. 275-280

    In game theory and operations research theory, a minimax often appears for a function $f(x,y)$ that depends on two vector variables $x$, $y$. Many works have been devoted to the study of the properties of minimax (or maximin). A minimax can be interpreted as the smallest guaranteed result for the minimizing player (the minimizing operator). In the study of minimax problems, various correctness issues are of some interest. This paper is devoted to one of these issues. In it, vectors $x$, $y$ belong to compacts $P$, $Q$ of corresponding Euclidean spaces $R^k$, $R^l$, and function $f(x,y)$ is continuous on product of spaces $R^k\times R^l$. The paper considers the dependence of minimax on small changes of compacts $P$, $Q$ in the Hausdorff metric. The continuity of the dependence of minimax on small variations of compacts $P$, $Q$ is proved.

  9. Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве и на конечном промежутке времени, зависящая от параметра. Изучаются множества достижимости и интегральные воронки дифференциального включения, соответствующего управляемой системе, содержащей параметр. При исследовании многочисленных задач теории управления и дифференциальных игр, конструировании их решений и оценивании погрешностей применяются различные теоретические подходы и ассоциированные с ними вычислительные методы. К упомянутым задачам принадлежат, например, различного рода задачи о сближении, разрешающие конструкции которых могут быть описаны достаточно просто в терминах множеств достижимости и интегральных воронок. В настоящей работе изучается зависимость множеств достижимости и интегральных воронок от параметра: оценивается степень этой зависимости от параметра при определенных условиях на управляемую систему. Степень зависимости интегральных воронок исследована на предмет изменения их объема при варьировании параметра. Для оценки этой зависимости вводятся системы множеств в фазовом пространстве, аппроксимирующие множества достижимости и интегральные воронки на заданном промежутке времени, отвечающие конечному разбиению этого промежутка. При этом сначала оценивается степень зависимости аппроксимирующей системы множеств от параметра, и затем эта оценка используется при оценке зависимости объема интегральной воронки дифференциального включения от параметра. Такой подход естественен и особенно полезен при изучении конкретных прикладных задач управления, при решении которых в конечном итоге приходится иметь дело не с идеальными множествами достижимости и интегральными воронками, а с их аппроксимациями, отвечающими дискретному представлению временного промежутка.

    We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval, which depends on a parameter. Reachable sets and integral funnels of a differential inclusion corresponding to a control system containing a parameter are studied. When studying numerous problems of control theory and differential games, constructing their solutions and estimating errors, various theoretical approaches and associated computational methods are used. The problems mentioned above include, for example, various types of approach problems, the resolving constructions of which can be described quite simply in terms of reachable sets and integral funnels. In this paper, we study the dependence of reachable sets and integral funnels on a parameter: the degree of this dependence on a parameter is estimated under certain conditions on the control system. The degree of dependence of the integral funnels is investigated for the change in their volume with a change in the parameter. To estimate this dependence, systems of sets in the phase space are introduced that approximate the reachable sets and integral funnels on a given time interval corresponding to a finite partition of this interval. In this case, the degree of dependence of the approximating system of sets on the parameter is first estimated, and then this estimate is used in estimating the dependence of the volume of the integral funnel of the differential inclusion on the parameter. This approach is natural and especially useful in the study of specific applied control problems, in solving which, in the end, one has to deal not with ideal reachable sets and integral funnels, but with their approximations corresponding to a discrete representation of the time interval.

  10. В контексте задач гарантированного управления рассматриваются следующие вопросы: связь возможности пошагового (на заданном разбиении $\Delta$) вычисления селектора мультифункции (м/ф) $\alpha$ для неизвестного, восстанавливаемого по шагам $\Delta$, аргумента с существованием у $\alpha$ мультиселектора (м/с) со специальным свойством (названым здесь $\Delta$-неупреждаемостью или частичной неупреждаемостью); второй вопрос — способы построение такого м/с для произвольной пары $(\alpha, \Delta)$; и последний — поиск эффективно проверяемых условий, обеспечивающих совпадение $\Delta$-неупреждающего м/с с неупреждающим.

    Мотивом к рассмотрению этих вопросов послужила схема управления, возникающая, например, в методе альтернированного интеграла, при использовании в управлении контрстратегий, или в некоторых задачах при использовании метода управления с поводырём.

    В работе показано, что рассматриваемая пошаговая схема управления реализуема тогда и только тогда, когда м/ф $\alpha$ имеет $\Delta$-неупреждающий и непустозначный м/с. Дана конечношаговая процедура построения такого м/с. Указаны эффективно проверяемые условия, обеспечивающие неупреждаемость частично неупреждающего м/с. Рассмотрены иллюстрирующие примеры.

    Let sets of functions $Z$ and $\Omega$ on the time interval $T$ be given, let there also be a multifunction (m/f) $\alpha$ acting from $\Omega$ to $Z$ and a finite set $\Delta$ of moments from $T$. The work deals with the following questions: the first one is the connection between the possibility of stepwise construction (specified by $\Delta$) of a selector $z$ of $\alpha(\omega)$ for an unknown step-by-step implemented argument $\omega\in\Omega$ and the existence of a multiselector (m/s) $\beta$ of the m/f $\alpha$ with a non-anticipatory property of special kind (we call it partially or $\Delta$-non-anticipated); the second question is when and how non-anticipated m/s could be expressed by means of partially non-anticipated one; and the last question is how to build the above $\Delta$-non-anticipated m/s $\beta$ for a given pair $(\alpha,\Delta)$.

    The consideration of these questions is motivated by the presence of such step-by-step procedures in the differential game theory, for example, in the alternating integral method, in pursuit-evasion problems posed with use of counter-strategies, and in the method of guide control.

    It is shown that the step-by-step construction of the value $z\in\alpha(\omega)$ can be carried out for any steps-implemented argument $\omega$ if and only if the above m/s $\beta$ is non-empty-valued. The key point of the work is the description of finite-step procedure for calculation of this $\Delta$-non-anticipated m/s $\beta$. Conditions are given that guarantee the m/s $\beta$ be a non-anticipative one. Illustrative examples are considered that include, in particular, control problems with disturbance.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref