Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'ideal fluid':
Найдено статей: 9
  1. В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.

    In this paper we consider an integrable Hamiltonian system on the Lie algebra $so(4)$ with an additional integral of the fourth degree - the Adler-van Moerbeke integrable case. We discuss classical works which explore, on the one hand, the dynamics of a rigid body with cavities completely filled with an ideal fluid performing a homogeneous vortex motion and, on the other hand, are devoted to the study of geodesic flows of left-invariant metrics on Lie groups. The equations of motion, the Hamiltonian function, Lie-Poisson brackets, Casimir functions and the phase space of the case under consideration are given. In previous papers, the investigation of the phase topology of the integrable Adler-van Moerbeke case was started: a spectral curve, a discriminant set and a bifurcation diagram of the moment map are explicitly shown, and characteristic exponents for determining the type of critical points of rank 0 and 1 of the moment map are presented. In this paper we present an algorithm for constructing Liouville tori. Examples are given of bifurcations of Liouville tori at the intersection of bifurcation curves for reconstructions of one torus into two tori and of two tori into two tori.

  2. Изучается задача о малых движениях идеальной стратифицированной жидкости со свободной поверхностью, частично покрытой упругим льдом. Упругий лед моделируется упругой пластиной. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Начальная краевая задача сведена к задаче Коши для дифференциального уравнения второго порядка в некотором гильбертовом пространстве. После подробного изучения свойств операторных коэффициентов, отвечающих возникшей системе уравнений, доказывается теорема о сильной разрешимости полученной задачи Коши на конечном интервале времени. На этой основе доказана также теорема о существовании решения и исходной начально-краевой задачи.

    We study the problem of small motions of an ideal stratified fluid with a free surface, partially covered with elastic ice. Elastic ice is modeled by an elastic plate. The problem is studied on the basis of an approach connected with application of the so-called operator matrices theory. To this end we introduce Hilbert spaces and some of their subspaces as well as auxiliary boundary value problems. The initial boundary value problem is reduced to the Cauchy problem for the differential second-order equation in Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the strong solvability of the Cauchy problem obtained on a finite time interval. On this basis, we find sufficient conditions for the existence of a strong (with respect to the time variable) solution of the initial-boundary value problem describing the evolution of the hydrosystem.

  3. Рассмотрено движение кругового цилиндра в идеальной жидкости в поле неподвижного источника. Показано, что при постоянной интенсивности источника система обладает интегралом момента и интегралом энергии. Указаны условия, при которых уравнения движения, редуцированные на уровень интеграла момента, допускают неустойчивую неподвижную точку. Данная неподвижная точка соответствует круговому движению цилиндра вокруг источника. Построена обратная связь, обеспечивающая стабилизацию указанной неподвижной точки за счет изменения интенсивности источника.

    The motion of a circular cylinder in an ideal fluid in the field of a fixed source is considered. It is shown that, when the source has constant strength, the system possesses a momentum integral and an energy integral. Conditions are found under which the equations of motion reduced to the level set of the momentum integral admit an unstable fixed point. This fixed point corresponds to circular motion of the cylinder about the source. A feedback is constructed which ensures stabilization of the above-mentioned fixed point by changing the strength of the source.

  4. В данной работе получены уравнения движения пары вихрей и кругового профиля с параметрическим возбуждением, которое возникает за счет периодического движения материальной точки. Подобные плоские задачи, с одной стороны, носят модельный характер и не могут быть использованы для точного количественного описания реальных траекторий системы. С другой стороны, во многих случаях такие модели позволяют получить достаточно точную качественную картину динамики и, вследствие простоты, данные 2D модели позволяют оценить влияние различных параметров. Описаны относительные положения равновесия, обобщающие решения Феппля и коллинеарные конфигурации, в отсутствии движения материальной точки. Показано, что в окрестности относительных равновесий в случае периодического движения центра масс профиля образуется стохастический слой.

    In this paper we obtain equations of motion for a vortex pair and a circular foil with parametric excitation due to the periodic motion of a material point. Undoubtedly, such problems are, on the one hand, model problems and cannot be used for an exact quantitative description of real trajectories of the system. On the other hand, in many cases such 2D models provide a sufficiently accurate qualitative picture of the dynamics and, due to their simplicity, an estimate of the influence of different parameters. We describe relative equilibria that generalize Föppl solutions and collinear configurations when the material point does not move. We show that a stochastic layer forms in the neighborhood of relative equilibria in the case of periodic motion of the foil's center of mass.

  5. В данной работе получена модель, описывающая движение точечных вихрей в идеальной несжимаемой жидкости на конечном плоском цилиндре. Подробно рассмотрен случай двух вихрей. Показано, что уравнения движения вихрей могут быть представлены в гамильтоновой форме и обладают дополнительным первым интегралом. Предложена процедура редукции на фиксированный уровень первого интеграла. Для полученной редуцированной системы построены фазовые портреты, указаны неподвижные точки и особенности системы.

    In this work, a model that describes the motion of point vortices in an ideal incompressible fluid on a finite flat cylinder is obtained. The case of two vortices is considered in detail. It is shown that the equations of motion of vortices can be represented in Hamiltonian form and have an additional first integral. A procedure of reduction to a fixed level of the first integral is proposed. For the reduced system, phase portraits are constructed, fixed points and singularities of the system are indicated.

  6. Рассматривается плоская задача о движении кругового цилиндра с переменным радиусом в идеальной, несжимаемой, тяжелой жидкости. Предполагается, что начальное возмущение жидкости вызвано вертикальным и безотрывным ударом цилиндра, полупогруженного в жидкость. Особенностью этой задачи является то, что при определенных условиях (например, при быстром торможении цилиндра или при быстром уменьшении его радиуса), происходит отрыв жидкости от тела, в результате которого вблизи его поверхности образуются присоединенные каверны. Формы внутренних свободных границ и конфигурация внешней свободной границы заранее неизвестны и подлежат определению в ходе решения задачи. Формулируется нелинейная задача с односторонними ограничениями, на основе которой определяется связность зоны отрыва, а также формы свободных границ жидкости на малых временах. В случае когда давление на внешней свободной поверхности совпадает с давлением в каверне, строится аналитическое решение задачи. Для определения одной из двух симметричных точек отрыва получено трансцендентное уравнение, содержащее полный эллиптический интеграл первого рода и элементарные функции. При кавитационном торможении недеформируемого цилиндра найдена явная формула для внутренней свободной границы жидкости на малых временах. Показано хорошее согласование аналитических результатов с прямыми численными расчетами.

    The 2D problem of the movement of a circular cylinder with a variable radius in an ideal, incompressible, heavy fluid is considered. It is assumed that the initial perturbation of the fluid is caused by a vertical and continuous impact of the cylinder semi-submerged in the fluid. The feature of this problem is that under certain conditions (for example, at fast braking of the cylinder or at fast reduction of its radius), there is a separation of the fluid from the body, resulting in the formation of attached cavities near its surface. The forms of the inner free boundaries and the configuration of the external free border are in advance unknown and are subject to definition when the problem is solved. A nonlinear problem with one-sided constraints is formulated, on the basis of which the connectivity of the separation zone and the shape of the free boundaries of the fluid at small times are determined. In the case where the pressure on the external free surface coincides with the pressure in the cavity, an analytical solution of the problem is constructed. To define one of two symmetric points of separation, a transcendental equation containing a full elliptic integral of the first kind and elementary functions is obtained. For the case of cavitational braking of a nondeformable cylinder, an explicit formula for the inner free boundary of the fluid on small times is found. Good agreement of analytical results with direct numerical calculations is shown.

  7. Рассмотрена динамика системы, описывающей управляемое движение неуравновешнного кругового профиля в присутствии точечных вихрей. Управление движением профиля реализуется за счет периодического изменения положения центра масс, гиростатического момента и момента инерции системы. Предложен вывод уравнений движения на основе подхода Седова, уравнения движения представлены в гамильтоновой форме. Рассмотрено периодическое возмущение известного интегрируемого случая.

    The dynamics of a system governing the controlled motion of an unbalanced circular foil in the presence of point vortices is considered. The foil motion is controlled by periodically changing the position of the center of mass, the gyrostatic momentum, and the moment of inertia of the system. A derivation of the equations of motion based on Sedov's approach is proposed, the equations of motion are presented in the Hamiltonian form. A periodic perturbation of the known integrable case is considered.

  8. Рассматривается движение жидкости, вызванное взаимодействием набегающей гравитационной волны, распространяющейся по свободной поверхности слоя вязкой несжимаемой жидкости, с круговым цилиндром, имеющим вертикальные образующие. Нелинейная краевая задача, описывающая такое движение, сведена к задаче для вертикальной компоненты вектора скорости, которая представляется в виде суммы потенциальной и вихревой составляющей. Получено решение данной задачи для случая колебаний малой амплитуды. Проведено сравнение поля скоростей для вязкой и идеальной жидкости.

    The motion of fluid due to the interaction of an incident gravitational wave spreading on the surface of viscous incompressible fluid with a circular cylinder having vertical elements is considered. A nonlinear boundary-value problem is reduced to determining the vertical component of a velocity vector represented by a sum of potential and rotational parts. The problem is solved for the small-amplitude oscillations. The comparison of the velocity field between the ideal and viscous liquids is made.

  9. Ветчанин Е.В., Караваев Ю.Л., Калинкин А.А., Клековкин А.В., Пивоварова Е.Н.
    Модель безвинтового подводного робота, с. 544-553

    Данная статья посвящена созданию модели подводного робота, приводящегося в движение с помощью расположенных внутри него роторов. Подобная конструкция не имеет подвижных элементов, взаимодействующих с окружающей средой, что минимизирует негативное воздействие на нее и повышает бесшумность движения робота в жидкости. Несмотря на многочисленные дискуссии о возможности и эффективности движения за счет перемещения внутренних масс, большое количество работ, опубликованных в последнее время, подтверждает актуальность исследований. В статье представлен обзор работ, направленных на изучение движения на основе перемещения внутренних масс. Предложена конструкция безвинтового подводного робота, перемещающегося за счет вращения внутренних роторов, для проведения теоретических и экспериментальных исследований. При проведении теоретических исследований модель представляет собой полый эллипсоид с расположенными внутри тремя роторами, оси вращения которых взаимно ортогональны. Для предложенной модели безвинтового подводного робота получены уравнения движения в виде классических уравнений Кирхгофа.

    Vetchanin E.V., Karavaev Y.L., Kalinkin A.A., Klekovkin A.V., Pivovarova E.N.
    A model of a screwless underwater robot, pp. 544-553

    The paper is devoted to the development of a model of an underwater robot actuated by inner rotors. This design has no moving elements interacting with an environment, which minimizes a negative impact on it, and increases noiselessness of the robot motion in a liquid. Despite numerous discussions on the possibility and efficiency of motion by means of internal masses' movement, a large number of works published in recent years confirms a relevance of the research. The paper presents an overview of works aimed at studying the motion by moving internal masses. A design of a screwless underwater robot that moves by the rotation of inner rotors to conduct theoretical and experimental investigations is proposed. In the context of theoretical research a robot model is considered as a hollow ellipsoid with three rotors located inside so that the axes of their rotation are mutually orthogonal. For the proposed model of a screwless underwater robot equations of motion in the form of classical Kirchhoff equations are obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref