Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Данная работа посвящена постановке и исследованию однозначной разрешимости краевых задач (типа задачи Дарбу, задачи Трикоми) для нагруженного интегро-дифференциального уравнения третьего порядка с гиперболическим и параболо-гиперболическим оператором. Существование и единственность решения краевой задачи доказана методом интегральных уравнений. Задачи эквивалентным образом сводятся к интегральным уравнениям Вольтерра со сдвигом. При достаточных условиях на заданные функции и коэффициенты доказывается однозначная разрешимость полученных интегральных уравнений.
нагруженное уравнение, уравнения смешанного типа, интегро-дифференциальное уравнение, интегральное уравнение со сдвигом, функция БесселяIn this paper, the unique solvability of the boundary value problems (of a type similar to the Darboux problem and the Tricomi problem) of a loaded third order integro-differential equation with hyperbolic and parabolic-hyperbolic operators is proved by method of integral equations. The problem is similarly reduced to a Volterra integral equation with a shift. Under sufficient conditions for given functions and coefficients the unique solvability is proved for the solution of obtained integral equations.
-
Изучается начально-краевая задача для многомерного псевдопараболического уравнения с переменными коэффициентами и граничными условиями третьего рода. Многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром. Показано, что при стремлении малого параметра к нулю решение полученной модифицированной задачи сходится к решению исходной задачи. Для приближенного решения полученной задачи строится локально-одномерная разностная схема А. А. Самарского. Методом энергетических неравенств получена априорная оценка, откуда следуют единственность, устойчивость и сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи. Для двумерной задачи построен алгоритм численного решения начально-краевой задачи для псевдопараболического уравнения с условиями третьего рода.
псевдопарабролическое уравнение, уравнение Аллера, локально-одномерная схема, устойчивость, сходимость разностной схемы, метод суммарной аппроксимацииWe study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.
-
Обратная краевая задача для линеаризованного уравнения Бенни-Люка с нелокальными условиями, с. 166-182Работа посвящена исследованию разрешимости обратной краевой задачи с неизвестным коэффициентом и правой частью, зависящей от времени, для линеаризованного уравнения Бенни-Люка с несамосопряженными краевыми и с дополнительными интегральными условиями. Задача рассматривается в прямоугольной области. Дается определение классического решения поставленной задачи. Сначала рассматривается вспомогательная обратная краевая задача и доказывается ее эквивалентность (в определенном смысле) исходной задаче. Для исследования вспомогательной обратной краевой задачи сначала используется метод разделения переменных. После применения формальной схемы метода разделения переменных решение прямой краевой задачи (при заданной неизвестной функции) сводится к решению задачи с неизвестными коэффициентами. После этого решение задачи сводится к решению некоторой счетной системы интегро-дифференциальных уравнений относительно неизвестных коэффициентов. В свою очередь, последняя система относительно неизвестных коэффициентов записывается в виде одного интегро-дифференциального уравнения относительно искомого решения. Затем, используя соответствующие дополнительные условия обратной вспомогательной краевой задачи, для определения неизвестных функций получаем систему двух нелинейных интегральных уравнений. Таким образом, решение вспомогательной обратной краевой задачи сводится к системе из трех нелинейных интегро-дифференциальных уравнений относительно неизвестных функций. Строится конкретное банахово пространство. Далее, в шаре из построенного банахова пространства с помощью сжатых отображений доказывается разрешимость системы нелинейных интегро-дифференциальных уравнений, которая также является единственным решением вспомогательной обратной краевой задачи. С использованием эквивалентности задач доказывается существование и единственность классического решения исходной задачи.
Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions, pp. 166-182The paper investigates the solvability of an inverse boundary-value problem with an unknown coefficient and the right-hand side, depending on the time variable, for the linearized Benney-Luke equation with non-self-adjoint boundary and additional integral conditions. The problem is considered in a rectangular domain. A definition of the classical solution of the problem is given. First, we consider an auxiliary inverse boundary-value problem and prove its equivalence (in a certain sense) to the original problem. To investigate the auxiliary inverse boundary-value problem, the method of separation of variables is used. By applying the formal scheme of the variable separation method, the solution of the direct boundary problem (for a given unknown function) is reduced to solving the problem with unknown coefficients. Then, the solution of the problem is reduced to solving a certain countable system of integro-differential equations for the unknown coefficients. In turn, the latter system of relatively unknown coefficients is written as a single integro-differential equation for the desired solution. Next, using the corresponding additional conditions of the inverse auxiliary boundary-value problem, to determine the unknown functions, we obtain a system of two nonlinear integral equations. Thus, the solution of an auxiliary inverse boundary-value problem is reduced to a system of three nonlinear integro-differential equations with respect to unknown functions. A special type of Banach space is constructed. Further, in a ball from a constructed Banach space, with the help of contracted mappings, we prove the solvability of a system of nonlinear integro-differential equations, which is also the unique solution to the auxiliary inverse boundary-value problem. Finally, using the equivalence of these problems the existence and uniqueness of the classical solution of the original problem are proved.
-
В этой статье мы предлагаем новый метод численной аппроксимации для решения единственного решения нелинейного интегро-дифференциального уравнения Вольтерра. Нас интересует особая форма этого уравнения, в которой производная искомого решения появляется под знаком интеграла нелинейным образом. Наше видение основано на двух разных подходах: мы используем метод Нистрёма для преобразования интеграла в конечную сумму, используя формулу численного интегрирования, затем мы используем метод численной обратной разностной производной для приближения к производной нашего решения. Такое сопоставление двух разных методов, первого результата численной обработки интегральных уравнений и второго результата численной обработки дифференциальных уравнений, дает новую нелинейную систему для приближения к решению нашего уравнения. Мы показываем, что система имеет единственное решение и что это численное решение идеально сходится к нашему решению. Раздел посвящен численным тестам, в которых мы показываем эффективность нашего нового видения по сравнению с двумя методами, основанными только на численном интегрировании.
интегро-дифференциальное уравнение Вольтерра, нелинейное уравнение, неподвижная точка, численная производная, метод НистрёмаIn this article, we propose a new numerical approximation method to deal with the unique solution of the nonlinear integro-differential Volterra equation. We are interested in a very particular form of this equation, in which the derivative of the sought solution appears under the integral sign in a nonlinear manner. Our vision is based on two different approaches: We use the Nyström method to transform the integral into a finite sum using a numerical integration formula, then we use the numerical backward difference derivative method to approach the derivative of our solution. This collocation between two different methods, the first outcome of the numerical processing of integral equations and the second outcome of the numerical processing of differential equations, gives a new nonlinear system for approaching the solution of our equation. We show that the system has a unique solution and that this numerical solution converges perfectly to our solution. A section is dedicated to numerical tests, in which we show the effectiveness of our new vision compared to two methods based only on numerical integration.
-
Исследуется обратная задача определения многомерного ядра интегрального члена, зависящего от временной переменной $t$ и $ (n-1)$-мерной пространственной переменной $x'=\left(x_1,\ldots, x_ {n-1}\right)$ из $n$-мерного уравнения теплопроводности с переменным коэффициентом теплопроводности. Прямую задачу представляет задача Коши для этого уравнения. Интегральный член имеет вид свертки по времени ядра и решения прямой задачи. Дополнительное условие для решения обратной задачи задается решение прямой задачи на гиперплоскости $x_n = 0.$ В начале изучаются свойства решения прямой задачи. Для этого эта задача сводится к решению интегрального уравнения второго порядка вольтерровского типа и к нему применяется метод последовательных приближений. Далее поставленная обратная задача приводится к двум вспомогательным задачам, дополнительное условие второй из них содержит неизвестное ядро вне интеграла. Затем вспомогательные задачи заменяются эквивалентной замкнутой системой интегральных уравнений вольтерровского типа относительно неизвестных функций. Применяя метод сжатых отображений к этой системе в классе гёльдеровских функций доказываем основной результат статьи, который является теоремой локального существования и единственности решения обратной задачи.
The inverse problem of determining a multidimensional kernel of an integral term depending on a time variable $t$ and $ (n-1)$-dimensional spatial variable $x'=\left(x_1,\ldots, x_ {n-1}\right)$ in the $n$-dimensional heat equation with a variable coefficient of thermal conductivity is investigated. The direct problem is the Cauchy problem for this equation. The integral term has the time convolution form of kernel and direct problem solution. As additional information for solving the inverse problem, the solution of the direct problem on the hyperplane $x_n = 0$ is given. At the beginning, the properties of the solution to the direct problem are studied. For this, the problem is reduced to solving an integral equation of the second kind of Volterra-type and the method of successive approximations is applied to it. Further the stated inverse problem is reduced to two auxiliary problems, in the second one of them an unknown kernel is included in an additional condition outside integral. Then the auxiliary problems are replaced by an equivalent closed system of Volterra-type integral equations with respect to unknown functions. Applying the method of contraction mappings to this system in the Hölder class of functions, we prove the main result of the article, which is a local existence and uniqueness theorem of the inverse problem solution.
-
Работа посвящена исследованию второй начально-краевой задачи для дифференциального уравнения третьего порядка псевдопараболического типа с переменными коэффициентами в многомерной области с произвольной границей. Рассматриваемое многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром и для полученного уравнения строится локально-одномерная разностная схема А.А. Самарского. С помощью принципа максимума получена априорная оценка решения локально-одномерной разностной схемы в равномерной метрике в норме $C$. Доказаны устойчивость и сходимость локально-одномерной разностной схемы.
псевдопараболическое уравнение, уравнение влагопереноса, локально-одномерная схема, устойчивость, сходимость разностной схемы, аддитивность схемыThe work is devoted to the study of the second initial-boundary value problem for a general-form third-order differential equation of pseudoparabolic type with variable coefficients in a multidimensional domain with an arbitrary boundary. In this paper, a multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter, and a locally one-dimensional difference scheme by A.A. Samarskii is used. Using the maximum principle, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme in the uniform metric in the $C$ norm. The stability and convergence of the locally one-dimensional difference scheme are proved.
-
В ограниченной по переменной $z$ области, имеющей слабо горизонтальную неоднородность, исследуется задача определения сверточного ядра $k(t,x)$, $t>0$, $x\in {\Bbb R}$, входящего в гиперболическое интегро-дифференциальное уравнение второго порядка. Предполагается, что это ядро слабо зависит от переменной $x$ и разлагается в степенной ряд по степеням малого параметра $\varepsilon$. Построен метод нахождения первых двух коэффициентов $k_{0}(t)$, $k_{1}(t)$ этого разложения по заданным первым двум моментам по переменной $x$ решения прямой задачи при $z=0$.
The problem of determining the memory of an environment with weak horizontal heterogeneity, pp. 383-402The problem of determining the convolutional kernel $k(t,x)$, $t>0$, $x \in {\Bbb R}$, included in a hyperbolic integro-differential equation of the second order, is investigated in a domain bounded by a variable $z$ and having weakly horizontal heterogeneity. It is assumed that this kernel weakly depends on the variable $x$ and decomposes into a power series by degrees of a small parameter $\varepsilon$. A method for finding the first two coefficients $k_{0}(t)$, $k_{1}(t)$ of this expansion is constructed according to the given first two moments in the variable $x$ of the solution of the direct problem at $z=0$.
-
Обратная задача для системы вязкоупругости в анизотропных средах с тетрагональной формой модуля упругости, с. 581-600Для приведенной канонической системы интегро-дифференциальных уравнений вязкоупругости рассмотрены прямая и обратная задачи определения поля скоростей упругих волн и матрицы релаксации. Задачи заменены замкнутой системой интегральных уравнений типа Вольтерра второго рода относительно преобразования Фурье по переменным $x_{1}$ и $x_{2}$ для решения прямой и обратной задачи. Далее к этой системе применяется метод сжимающих отображений в пространстве непрерывных функций с весовой нормой. В работе доказаны теоремы о глобальные существования и единственности решений задач.
Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus, pp. 581-600For the reduced canonical system of integro-differential equations of viscoelasticity, direct and inverse problems of determining the velocity field of elastic waves and the relaxation matrix are considered. The problems are replaced by a closed system of Volterra integral equations of the second kind with respect to the Fourier transform in the variables $x_{1}$ and $x_{2}$ for the solution of the direct problem and unknowns of the inverse problem. Further, the method of contraction mappings in the space of continuous functions with a weighted norm is applied to this system. Thus, we prove global existence and uniqueness theorems for solutions of the problems.
-
В данной работе исследуется обратная задача для одномерного интегро-дифференциального уравнения теплопроводности с нелокальными начально-краевыми и интегральными условиями переопределения. Мы использовали метод Фурье и принцип Шаудера для исследования разрешимости прямой задачи. Далее задача сводится к эквивалентной замкнутой системе интегральных уравнений относительно неизвестных функций. Существование и единственность решения интегральных уравнений доказывается с помощью сжимающего отображения. Наконец, с помощью эквивалентности получается существование и единственность классического решения.
интегро-дифференциальное уравнение, нелокальная начально-краевая задача, обратная задача, интегральное уравнение, принцип Шаудера
Kernel determination problem in an integro-differential equation of parabolic type with nonlocal condition, pp. 90-102In this paper, an inverse problem for a one-dimensional integro-differential heat equation is investigated with nonlocal initial-boundary and integral overdetermination conditions. We use the Fourier method and the Schauder principle to investigate the solvability of the direct problem. Further, the problem is reduced to an equivalent closed system of integral equations with respect to unknown functions. Existence and uniqueness of the solution of the integral equations are proved using a contractive mapping. Finally, using the equivalency, the existence and uniqueness of the classical solution is obtained.
-
Оценки устойчивости решений некоторых обратных задач для интегро-дифференциальных уравнений, с. 75-82В статье исследуются вопросы устойчивости решений обратных задач для двух интегро-дифференциальных уравнений гиперболического типа. Теоремы существования и единственности решений этих задач, в малом, были получены и опубликованы автором ранее. Поэтому в данной работе рассматриваются исключительно вопросы устойчивости этих решений. В теореме 1 доказывается условная устойчивость решения обратной задачи об определении ядра интеграла для интегро-дифференциального уравнения
$$u_{tt}=u_{xx}-\int_0^tk(\tau)u(x,t-\tau)\, d\tau, \qquad (x,t)\in \mathbb{R}\times \mathbb{R}_+,$$ с начальными данными $u\big|_{t=0}=0,$ $u_t\big|_{t=0}=\delta(x)$ и по дополнительной информации о решении прямой задачи $u(0,t)=f_1(t)$, $u_x(0,t)=f_2(t).$ С этой целью обратная задача заменяется эквивалентной системой интегральных уравнений относительно неизвестных функций. Для доказательства теоремы применяется метод последовательных приближений. Далее, используются метод оценок интегральных уравнений и неравенство Гронуолла.
Аналогично доказываемая теорема 2 посвящается оценке условной устойчивости решения обратной задачи об определении ядра интеграла для того же интегро-дифференциального уравнения, в ограниченной по $x$ области $x\in(0,l),$ с начальными $u\big|_{t=0}=0,$ $u_t\big|_{t=0}=\delta'(x)$ и граничными условиями $(u_x-hu)\big|_{x=0}=0,$ $(u_x+Hu)\big|_{x=l}=0$, $t>0$. В этом случае дополнительная информация о решении прямой задачи задается в виде $u(0,t)=f(t)$, $t\geqslant 0$. Здесь $h,H$ - вещественные и конечные числа.
Evaluation of the stability of some inverse problems solutions for integro-differential equations, pp. 75-82The paper investigates the stability of inverse problems solutions for two integro-differential hyperbolic equations. Theorems of existence and uniqueness of these solutions (in the small) have been obtained and published earlier by author. Thus only stability problems of these solutions are considered in this paper. In Theorem 1 we prove conditional stability of the solution of the following inverse problem: determine the kernel of the integral for integro-differential equation
$$u_{tt}=u_{xx}-\int_0^tk(\tau)u(x,t-\tau)\, d\tau, \qquad (x,t)\in \mathbb{R}\times \mathbb{R}_+,$$
with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta(x),$ and additional information about the direct problem solution $u(0,t)=f_1(t)$, $u_x(0,t)=f_2(t).$ The inverse problem is replaced by an equivalent system of integral equations for the unknown functions. To prove the theorem the method of successive approximations is used. Next, the method of estimating the integral equations and Gronwall's inequality are used.
In a similar manner we prove Theorem 2. It is devoted to estimating the conditional stability of the solution of kernel determination problem for the same integro-differential equation in a bounded domain with respect to $x,$ $x\in(0,l),$ with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta'(x),$ and boundary conditions $(u_x-hu)\big|_{x=0}=0$, $(u_x+Hu)\big|_{x=l}=0$, $t>0$. In this case the additional information about the direct problem solution is given as $u(0,t)=f(t)$, $t\geqslant0$. Here $h$ and $H$ are finite real numbers.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.