Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В качестве математической модели конфликта рассматривается бескоалиционная игра Γ двух участников при неопределенности. О неопределенности известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют. Для оценки риска в Γ привлекается функция риска по Сэвиджу (из принципа минимаксного сожаления). Качество функционирования участников конфликта оценивается по двум критериям - исходам и рискам, при этом каждый из них стремится увеличить исход и одновременно уменьшить риск. На основе синтеза принципов минимаксного сожаления и гарантированного результата, равновесности по Нэшу и оптимальности по Слейтеру, а также решения иерархической двухуровневой игры по Штакельбергу формализуется понятие гарантированного по исходам (выигрышам) и рискам равновесия в Γ. Приведен пример. Затем устанавливается существование такого решения в смешанных стратегиях при обычных ограничениях в математической теории игр.
стратегии, ситуации, неопределенности, бескоалиционная игра, равновесность по Нэшу, максимум и минимум по СлейтеруAs a mathematical model of conflict the non-cooperation game Γ of two players under uncertainty is considered. About uncertainty only the limits of change are known. Any characteristics of probability are absent. To estimate risk in Γ we use Savage functions of risk (from principle of minimax regret). The quality of functioning of conflict's participants is estimated according to two criteria: outcomes and risks, at that each of the participants tries to increase the outcome and simultaneously to decrease the risk. On the basis of synthesis of principles of minimax regret and guaranteed result, Nash equilibrium and Slater optimality as well as solution of the two-level hierarchical Stackelberg game, the notion of guaranteed equilibrium in Γ (outcomes (prize) and risks) is formalized. We give the example. Then the existence of such a solution in mixed strategies at usual limits in mathematical game theory is established.
-
О численном решении дифференциальных игр с нетерминальной платой в классах смешанных стратегий, с. 34-48Рассматривается антагонистическая линейно-выпуклая дифференциальная игра с показателем качества, оценивающим совокупность отклонений траектории движения в наперед заданные моменты времени от заданных целевых точек. Исследуется случай, когда не выполняется условие седловой точки в маленькой игре, также известное как условие Айзекса. Игра формализуется в классах смешанных стратегий управления игроков. Описывается численный метод для приближенного вычисления цены игры и построения оптимальных стратегий. Метод основывается на попятном построении выпуклых сверху оболочек вспомогательных программных функций. Приводятся результаты численных экспериментов на модельных примерах.
On numerical solution of differential games with nonterminal payoff in classes of mixed strategies, pp. 34-48A zero-sum linear-convex differential game with a quality index that estimates a set of deviations of a motion trajectory at given instants of time from given target points is considered. A case when the saddle point condition in a small game, also known as Isaac's condition, does not hold, is studied. The game is formalized in classes of mixed control strategies of players. A numerical method for approximate computation of the game value and optimal strategies is elaborated. The method is based on the recurrent construction of upper convex hulls of auxiliary program functions. The results of numerical experiments in model examples are given.
-
В статье для игр в нормальной формой при интервальной неопределенности вводится концепция сильного коалиционного равновесия. Эта концепция основана на синтезе трех понятий: индивидуальной рациональности, коллективной рациональности для игр в нормальной форме без побочных платежей и коалиционной рациональности. Для простоты изложения, сильное коалиционное равновесие рассматривается для игр 4 лиц при неопределенности. Достаточные условия существования сильного коалиционного равновесия в чистых стратегиях устанавливаются с помощью седловой точки специального вида свертки Гермейра. Наконец, следуя подходу Бореля, Неймана и Нэша, доказана теорема существования сильного коалиционного равновесия в смешанных стратегиях при стандартных для теории игр условиях (компактность и выпуклость множеств стратегий игроков, компактность множества неопределенностей и непрерывность функций выигрыша).
игры в нормальной форме, неопределенность, гарантии, смешанные стратегии, свертка Гермейера, седловая точка, равновесиеThe Strong Coalitional Equilibrium (SCE) is introduced for normal form games under uncertainty. This concept is based on the synthesis of the notions of individual rationality, collective rationality in normal form games without side payments, and a proposed coalitional rationality. For presentation simplicity, SCE is presented for 4-person games under uncertainty. Sufficient conditions for the existence of SCE in pure strategies are established via the saddle point of the Germeir's convolution function. Finally, following the approach of Borel, von Neumann and Nash, a theorem of existence of SCE in mixed strategies is proved under common minimal mathematical conditions for normal form games (compactness and convexity of players' strategy sets, compactness of uncertainty set and continuity of payoff functions).
-
Рассматривается нелинейная однотипная дифференциальная игра с фиксированным моментом окончания. Платой является норма фазового вектора. Вычислена функция цены игры и найдены оптимальные стратегии игроков.
We consider a nonlinear similar differential game with fixed timing ending. A price is a norm of phase vector. We evaluate a function of game value and optimal strategies of players.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.