Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'multivariate spline':
Найдено статей: 2
  1. Исследовано однопараметрическое семейство квадратичных интерполяционных многочленов нескольких переменных. В роли параметра выступает точка n-мерного пространства. Исследованы вопросы существования и единственности интерполяционных многочленов. Для многочленов получено явное представление (в барицентрической системе координат). Показано, что лишь для одного-единственного параметра имеет место непрерывная стыковка интерполяционных многочленов, построенных на элементах триангуляции специального вида. Для интерполяционного многочлена, соответствующего данному параметру, получено явное представление в декартовой системе координат. Применение интерполяции с данным параметром позволяет осуществлять квадратичную сплайн-аппроксимацию функций многих переменных (одновременно с аппроксимацией поля градиента этой функции).

    The one-parametrical family of quadratic interpolated polynomials of several variables is investigated. In a role of parameter the point of n-dimensional space acts. Questions of existence and uniqueness interpolated polynomials are investigated. For polynomials the obvious representation (in barycentric system of coordinates) is proved. It is shown that only for the unique parameter continuous docking of interpolated polynomials constructed on elements of a triangulation of a special type takes place. For interpolated polynomial appropriating the given parameter the obvious representation in the Cartesian system of coordinates is proved. Application of interpolation with the given parameter makes possible quadratic spline-approximation of functions of many variables (at the same time with approximation of a field of a gradient of this function).

  2. Приведены обоснование и процедура построения специальных многомерных сплайнов произвольной степени лагранжевого типа, названных λ-сплайнами. Они строятся из многомерных интерполяционных алгебраических многочленов фиксированной степени, заданных на симплексах специальной триангуляции области определения исходной функции.

    We give the basis and procedure of construction of special multivariate splines of any degree of Lagrange’s type, named by λ-splines. They are under construction from multivariate interpolated algebraic polynomials of the fixed degree set on simplexes of special triangulation of a range of definition of initial function.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref