Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'numerical integration':
Найдено статей: 29
  1. В этой статье мы предлагаем новый метод численной аппроксимации для решения единственного решения нелинейного интегро-дифференциального уравнения Вольтерра. Нас интересует особая форма этого уравнения, в которой производная искомого решения появляется под знаком интеграла нелинейным образом. Наше видение основано на двух разных подходах: мы используем метод Нистрёма для преобразования интеграла в конечную сумму, используя формулу численного интегрирования, затем мы используем метод численной обратной разностной производной для приближения к производной нашего решения. Такое сопоставление двух разных методов, первого результата численной обработки интегральных уравнений и второго результата численной обработки дифференциальных уравнений, дает новую нелинейную систему для приближения к решению нашего уравнения. Мы показываем, что система имеет единственное решение и что это численное решение идеально сходится к нашему решению. Раздел посвящен численным тестам, в которых мы показываем эффективность нашего нового видения по сравнению с двумя методами, основанными только на численном интегрировании.

    Guebbai H., Lemita S., Segni S., Merchela W.
    Difference derivative for an integro-differential nonlinear Volterra equation, pp. 176-188

    In this article, we propose a new numerical approximation method to deal with the unique solution of the nonlinear integro-differential Volterra equation. We are interested in a very particular form of this equation, in which the derivative of the sought solution appears under the integral sign in a nonlinear manner. Our vision is based on two different approaches: We use the Nyström method to transform the integral into a finite sum using a numerical integration formula, then we use the numerical backward difference derivative method to approach the derivative of our solution. This collocation between two different methods, the first outcome of the numerical processing of integral equations and the second outcome of the numerical processing of differential equations, gives a new nonlinear system for approaching the solution of our equation. We show that the system has a unique solution and that this numerical solution converges perfectly to our solution. A section is dedicated to numerical tests, in which we show the effectiveness of our new vision compared to two methods based only on numerical integration.

  2. На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации потенциала двойного слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho=\left(r^2-d^2\right)^{1/2}$, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^5$, а также на самой границе. Также доказано, что использование для вычисления интегралов стандартных квадратурных формул не нарушает равномерной кубической сходимости аппроксимаций прямого значения потенциала на границе класса $C^6$. При некоторых упрощениях доказано, что использование для вычисления интегралов стандартных квадратурных формул влечет отсутствие равномерной сходимости аппроксимаций потенциала внутри области вблизи любой граничной точки. Теоретические выводы подтверждены результатами численного решения задачи Дирихле для уравнения Лапласа в круговой области.

    On the basis of piecewise quadratic interpolation, semi-analytical approximations of the double layer potential near and on the boundary of a two-dimensional domain are obtained. To calculate the integrals formed after the interpolation of the density function, exact integration with respect to the variable $\rho=\left(r^2-d^2\right)^{1/2}$ is used, where $d$ and $r$ are the distances from the observed point to the boundary of the domain and to the boundary point of integration, respectively. The study proves the stable convergence of such approximations with the cubic velocity uniformly near the boundary of the class $C^5$, and also on the boundary itself. It is also proved that the use of standard quadrature formulas for calculating the integrals does not violate the uniform cubic convergence of approximations of the direct value of the potential on the boundary of the class $C^6$. With some simplifications, it is proved that the use of standard quadrature formulas for calculating the integrals entails the absence of uniform convergence of potential approximations inside the domain near any boundary point. The theoretical conclusions are confirmed by the results of the numerical solution of the Dirichlet problem for the Laplace equation in a circular domain.

  3. В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.

    We consider a system which consists of a circular cylinder subject to gravity interacting with a point vortex in a perfect fluid. In contrast to previous works, in this paper the circulation about the cylinder is assumed to be zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. Using autonomous integral we reduce the order of the system by one degree of freedom in a case of zero circulation which early was not considered. Unlike nonzero circulation in the absence of point vortices when the cylinder moves inside a certain horizontal stripe it is shown that in the presence of vortices and with circulation equal to zero a vertical coordinate of the cylinder is unbounded decreasing. We then focus on the numerical study of dynamics of our system. In a case of zero circulation trajectories are noncompact. The different kinds of the scattering function of the vortex by cylinder were obtained. The form of these functions argues to chaotic behavior of the scattering which means that an additional analytical integral is absent.

  4. Исследована выпуклость множеств достижимости по части координат нелинейных систем с интегральными ограничениями на управление на малых промежутках времени. Доказаны достаточные условия выпуклости, имеющие вид ограничений на асимптотику собственных чисел грамиана управляемости линеаризованной системы по части координат. В качестве примеров, в статье описаны две нелинейные системы третьего порядка, в одной из которых линеаризованная вдоль траектории, порожденной нулевым управлением, система неуправляема, а в другом управляема. Исследованы достаточные условия выпуклости проекций множеств достижимости. Проведено численное моделирование, продемонстрировавшее невыпуклость некоторых проекций даже для малых длин временного промежутка.

    We investigate the convexity of the reachable sets for some of the coordinates of nonlinear systems with integral constraints on the control at small time intervals. We have proved sufficient convexity conditions in the form of constraints on the asymptotics of the eigenvalues of the Gramian of the controllability of a linearized system for some of the coordinates. There are two nonlinear third-order systems under study as examples. The system linearized along a trajectory generated by zero control is uncontrollable, and the system in the other example is completely controllable. We investigate the sufficient conditions for convexity of projection of reachable sets. Numerical modeling has been carried out, demonstrating the non-convexity of some projections even for small time intervals.

  5. В статье предложена численная методика, основанная на методе конечных разностей, для приближенного решения нелокальной краевой задачи второго порядка для обыкновенных дифференциальных уравнений. Ясно, что мост, построенный с двумя опорными точками в каждой конечной точке, приводит к стандартному двухточечному локальному граничному условию, а мост, созданный с помощью многоточечных опор, соответствует многоточечному граничному условию. В то же время, если нелокальные граничные условия могут быть установлены вблизи каждой конечной точки многоточечного опорного моста, возникает двухточечное нелокальное граничное условие. Результаты расчетов для нелинейной модельной задачи представлены для проверки предложенной идеи. Проанализировано влияние изменения параметров на сходимость предложенного метода.

    In the article a numerical technique based on the finite difference method is proposed for the approximate solution of a second order nonlocal boundary value problem for ordinary differential equations. It is clear that a bridge designed with two support points at each end point leads to a standard two-point local boundary value condition, and a bridge contrived with multi-point supports corresponds to a multi-point boundary value condition. At the same time if non-local boundary conditions can be set up near each endpoint of a multi-point support bridge, a two-point nonlocal boundary condition arises. The computational results for the nonlinear model problem are presented to validate the proposed idea. The effect of parameters variation on the convergence of the proposed method is analyzed.

  6. В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.

    We consider a system which consists of a circular cylinder subject to gravity interacting with N vortices in a perfect fluid. Generically, the circulation about the cylinder is different from zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. We then focus on the study of a configuration of the Foppl type: a falling cylinder is accompanied with a vortex pair (N=2). Now the circulation about the cylinder is assumed to be zero and the governing equations are considered on a certain invariant manifold. It is shown that, unlike the Foppl configuration, the vortices cannot be in a relative equilibrium. A restricted problem is considered: the cylinder is assumed to be sufficiently massive and thus its falling motion is not affected by the vortices. Both restricted and general problems are studied numerically and remarkable qualitative similarity between the problems is outlined: in most cases, the vortex pair and the cylinder are shown to exhibit scattering.

  7. Проводится исследование динамической эволюции шести моделей рассеянных звездных скоплений по данным о фазовых координатах звезд, полученных при численном интегрировании уравнений движения звезд. Для этой цели используются фазовые координаты звезд для 100 равноотстоящих моментов времени от начального t=0 до tm≅5.1τvr (τvr - начальное время бурной релаксации скопления). На этом интервале времени ошибки, связанные с округлением и экспоненциальным нарастанием возмущений в исходных координатах звезд, существенно не сказываются на статистических выводах о характере движения звезд скопления. Метод исследования основан на вычислениях взаимных корреляционных функций C1,2=C1,2(τ,r) (τ - временная задержка, r - расстояние между точками) для флуктуаций фазовой плотности и применении Фурье-преобразования функций C1,2 для расчета спектра частот и дисперсионных соотношений. Анализ графиков функций C1,2, спектров частот и дисперсионных кривых подтверждает существование в моделях волн фазовой плотности, позволяет установить полный спектр радиальных колебаний фазовой плотности, отделить устойчивые колебания от неустойчивых, рассчитать периоды колебаний фазовой плотности и инкременты нарастания неустойчивых колебаний фазовой плотности. Подтверждены теоретические оценки периодов известных неустойчивых гомологических колебаний ядер моделей скоплений. Указываются некоторые астрофизические приложения полученных результатов: возникновение иррегулярных структур в рассеянных скоплениях, слабая турбулентность в движениях звезд скоплений.

    The investigation of dynamical evolution of 6 open cluster models is carried out on data about phase coordinates of stars received by numerical integration of stellar motion equations. To attain the aim the phase coordinates of stars for 100 equidistant moments of time from the initial t=0 to tm≅5.1τvr (τvr is the initial time of cluster violent relaxation), are used. Over the interval of time the rounding-off errors and errors because of exponential growth of initial coordinates perturbations do not affect statistical conclusions about motion behavior of cluster stars. The investigation method is based on calculations of mutual correlation functions C1,2=C1,2(τ,r) (τ  is the time delay, r is the distance between the points) for phase density fluctuations and application of Fourier transformations of functions C1,2 in order to calculate frequency spectra and dispersion relations. The analysis of graphics C1,2, frequency spectra and dispersion curves confirms the existence of phase density waves in cluster models, allows to get a complete spectrum of phase density radial oscillations, to separate stable and unstable oscillations, to calculate the periods of phase density oscillations and increments of unstable phase density oscillations. The theoretical estimations of periods of known unstable homological core oscillations of cluster models are confirmed. Pointed out are some astrophysical applications of results received: the origin of irregular structures in open clusters, weak turbulence of cluster star motions.

  8. Рассматриваются периодические по времени возмущения асимметричного уравнения маятникового типа, близкого к интегрируемому стандартному уравнению математического маятника. Для автономного уравнения решается проблема предельных циклов, которая сводится к исследованию порождающих функций Пуанкаре-Понтрягина. Строится разбиение плоскости параметров на области с разным поведением фазовых кривых. Даются основные фазовые портреты для каждой области полученного разбиения. Для неавтономного уравнения изучается вопрос о структуре резонансных зон, к которому приводит решение задачи о синхронизации колебаний. Вычисляются усредненные уравнения маятникового типа, описывающие поведение решений исходного уравнения в индивидуальных резонансных зонах, и проводится их анализ. Устанавливается глобальное поведение решений в ячейках, не содержащих малых окрестностей невозмущенных сепаратрис. С помощью аналитического метода Мельникова и численного моделирования изучаются основные бифуркации неавтономного уравнения, связанные с возникновением негрубых гомоклинических кривых. На плоскости основных параметров строится бифуркационная диаграмма для отображения Пуанкаре, порожденного исходным уравнением, описывающая различные типы гомоклинических касаний сепаратрис седловой неподвижной точки. Обнаруживаются гомоклинические зоны (те области параметров, для которых существуют гомоклинические траектории к седловой неподвижной точки) с негладкими бифуркационными границами.

    Time-periodic perturbations of an asymmetric pendulum-type equation close to an integrable standard equation of a mathematical pendulum are considered. For an autonomous equation, the problem of limit cycles, which reduces to the study of the Poincaré-Pontryagin generating functions, is solved. A partition of the parameter plane into domains with different behavior of the phase curves is constructed. Basic phase portraits for each domain of the obtained partition are given. For a nonautonomous equation, the question of the structure of the resonance zones, to which the solution of the problem of synchronization of oscillations leads, is studied. Averaged equations of the pendulum type, describing the behavior of solutions of the original equation in individual resonance zones, are calculated and analyzed. The global behavior of solutions in cells that do not contain small neighborhoods of unperturbed separatrices is ascertained. Using the analytical Melnikov method and numerical modeling, the basic bifurcations of the nonautonomous equation associated with the appearance of nonrough homoclinic curves are studied. On the plane of the main parameters, a bifurcation diagram for the Poincaré map generated by the original equation, describing different types of homoclinic tangencies of the separatrices of the saddle fixed point, is constructed. Homoclinic zones (those domains of parameters for which homoclinic trajectories to the saddle fixed point exist) with nonsmooth bifurcation boundaries are found.

  9. Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве и на конечном промежутке времени, зависящая от параметра. Изучаются множества достижимости и интегральные воронки дифференциального включения, соответствующего управляемой системе, содержащей параметр. При исследовании многочисленных задач теории управления и дифференциальных игр, конструировании их решений и оценивании погрешностей применяются различные теоретические подходы и ассоциированные с ними вычислительные методы. К упомянутым задачам принадлежат, например, различного рода задачи о сближении, разрешающие конструкции которых могут быть описаны достаточно просто в терминах множеств достижимости и интегральных воронок. В настоящей работе изучается зависимость множеств достижимости и интегральных воронок от параметра: оценивается степень этой зависимости от параметра при определенных условиях на управляемую систему. Степень зависимости интегральных воронок исследована на предмет изменения их объема при варьировании параметра. Для оценки этой зависимости вводятся системы множеств в фазовом пространстве, аппроксимирующие множества достижимости и интегральные воронки на заданном промежутке времени, отвечающие конечному разбиению этого промежутка. При этом сначала оценивается степень зависимости аппроксимирующей системы множеств от параметра, и затем эта оценка используется при оценке зависимости объема интегральной воронки дифференциального включения от параметра. Такой подход естественен и особенно полезен при изучении конкретных прикладных задач управления, при решении которых в конечном итоге приходится иметь дело не с идеальными множествами достижимости и интегральными воронками, а с их аппроксимациями, отвечающими дискретному представлению временного промежутка.

    We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval, which depends on a parameter. Reachable sets and integral funnels of a differential inclusion corresponding to a control system containing a parameter are studied. When studying numerous problems of control theory and differential games, constructing their solutions and estimating errors, various theoretical approaches and associated computational methods are used. The problems mentioned above include, for example, various types of approach problems, the resolving constructions of which can be described quite simply in terms of reachable sets and integral funnels. In this paper, we study the dependence of reachable sets and integral funnels on a parameter: the degree of this dependence on a parameter is estimated under certain conditions on the control system. The degree of dependence of the integral funnels is investigated for the change in their volume with a change in the parameter. To estimate this dependence, systems of sets in the phase space are introduced that approximate the reachable sets and integral funnels on a given time interval corresponding to a finite partition of this interval. In this case, the degree of dependence of the approximating system of sets on the parameter is first estimated, and then this estimate is used in estimating the dependence of the volume of the integral funnel of the differential inclusion on the parameter. This approach is natural and especially useful in the study of specific applied control problems, in solving which, in the end, one has to deal not with ideal reachable sets and integral funnels, but with their approximations corresponding to a discrete representation of the time interval.

  10. В работе рассмотрены новый метод конструктивного понижения порядка для систем точечных вихрей на плоскости и сфере. Этот метод близок к классической процедуре исключения узла по Якоби в небесной механике. Однако, в случае динамики вихрей возникают некоторые особые ситуации, требующие отдельного рассмотрения. Более подробно рассмотрена задача приведения четырех точечных вихрей на плоскости и сфере.

    We offer a new method of reduction for a system of point vortices on a plane and a sphere. This method is similar to the classical node elimination procedure. However, as applied to the vortex dynamics, it requires substantial modification. Reduction of four vortices on a sphere is given in more detail.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref