Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,L − n. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса y ∈ E. Критерий аппроксимации минимум величины ||y − ŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами α ∈ ω ⊂ S ⊂ En+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора y ∈ E есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.
вариационная идентификация, алгебраическая идентификация, кусочно–линейная динамическая аппроксимация, ортогональная регрессия, неградиентная оптимизацияSome properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients α ∈ ω ⊂ S ⊂ En+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.
-
Рассмотрены недостатки аристотелевского базиса силлогистики, показано почему в классической логике возникли парадоксы материальной импликации и предлагается способ проверки соответствия условного суждения логическому следованию (материальной импликации). Показано, что в ортогональном базисе полисиллогистики эти парадоксы невозможны.
The article analyzes the disadvantages of Aristotle syllogistic basis. The author indicates reasons for paradoxes of tangible implication in classical logics. It is suggested to verify correlations between a conditioned judgment and a tangible implication. Such paradoxes are not allowed in the multi-level syllogistic orthogonal basis.
-
Логика высказываний на основе алгебраической системы, включающая традиционную силлогистику, с. 127-146В статье рассматривается возможность и актуальность замены в классической логике и традиционной силлогистике многосмыслового базиса Аристотеля на односмысловой ортогональный базис, изоморфный отношениям «равносильно», «влечет», «независимы» между терминами рассуждений и случайными событиями в теории вероятностей. Обсуждаются теоретические результаты и приложения. Выявляются недостатки математической модели, лежащей в основе классической логики, и предлагается ее улучшенный вариант - логика SL1, в основе которой уточненная математическая модель - невырожденная булева алгебра и сопряженная с ней алгебраическая система на основе множеств. В работе описываются неклассическая интерпретация умозаключений в ортогональном базисе и возможности эффективной компьютерной проверки логического следования в семантическом смысле, также обоснован новый метод решений логических уравнений. Приводятся примеры решения задач.
моделирование, силлогистика, ортогональный базис силлогистики, булева алгебра, исчисление конституент, изоморфизм и гомоморфизм алгебраических систем, логическое следование в семантическом смысле, вероятность, логические уравнения
Propositional logic on the basis of algebraic system containing traditional syllogistics, pp. 127-146The article explains the reasons to replace the multi-semantic basis of Aristotle in classical logic and traditional syllogistic with a mono-semantic basis, isomorphic to relationships ``equivalent'', ``entailing'', ``independent'', which happen between terms of reasoning and random events in probability theory. Theoretical results and applications are discussed. The author identifies the drawbacks of the mathematical model which is the basis of classical logics. An advanced version of the mathematical model which is logic SL1, based on non-degenerative Boolean algebra and an adjoint algebraic set-based system, is proposed. The article considers a non-classical interpretation of judgments in the orthogonal basis of syllogistics; it also describes the opportunities of effective computer validation of logical implication in semantics. A new method of solving logic equations is presented. The samples of solutions are presented.
-
Ортогональный базис силлогистики, с. 155-166В статье рассматривается новый базис силлогистики, которым можно заменить базис Аристотеля. Его основным отличием является однозначность смысла любого из функторов.
Orthogonal basic of syllogistics, pp. 155-166The author offers the basis of syllogistics alternative to the basis of Aristotle. It possesses an important quality, which is that all factors of the basis have a simple interpretation.
-
Алгоритм решения полисиллогизмов в ортогональном базисе посредством исчисления конституентных множеств, с. 172-185В статье обосновывается необходимость применения альтернативного Аристотелевскому ортогонального базиса силлогистики и выборе в качестве инструмента для решения задач взамен алгебре логики расширенной алгебры множеств. Сформулирован алгоритм построения всех возможных классов интерпретаций решения в терминах множеств конечной меры. Проведены компьютерные эксперименты по решению классических задач Буля, Шредера, Порецкого. При этом получены дополнительные результаты к имеющимся решениям.
Algorithm for solving polisillogizm in the orthogonal basis by calculating the constituent sets, pp. 172-185The article explains the need for orthogonal basis of syllogistics as an alternative to the basis of Aristotle and the need for the choice of extended algebra of sets as a tool for solving problems instead of logic algebra. An algorithm for constructing all possible classes of interpretations of solutions in terms of sets of finite measure has been formulated. Computer simulations to solve the classic tasks of Buhl, Schroeder, Poretsky have been conducted. At the same time additional results to existing solutions have been received.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.