Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Индуцированные шумом переходы и деформации стохастических аттракторов в одномерных системах, с. 3-16Исследуется воздействие аддитивных и параметрических шумов на аттракторы одномерной системы, задаваемой стохастическим дифференциальным уравнением Ито. Показано, что в отличие от аддитивных, параметрические возмущения приводят к сдвигу экстремумов функции плотности распределения. Для величины такого сдвига получено разложение по малому параметру интенсивности шума. Показано, что воздействие параметрического шума может изменить не только расположение, но и количество экстремумов плотности распределения. Подробный анализ соответствующих индуцированных шумами явлений проведен для трех динамических моделей. Сравнение погрешности приближений разного порядка для оценки сдвига экстремумов функции плотности представлено на примере линейной модели. Два сценария перехода между унимодальной и бимодальной формами стохастического аттрактора исследованы для систем с разными типами кубической нелинейности.
Noise-induced transitions and deformations of stochastic attractors for one-dimensional systems, pp. 3-16The influence of additive and parametrical noise on attractors of the one-dimensional system governed by the stochastic differential Ito equation is investigated. It is shown that unlike additive, parametrical disturbances lead to the shift of extrema of probability density function. For the value of this shift, a decomposition on small parameter of noise intensity is obtained. It is shown that the influence of the parametrical noise can change not only the arrangement, but also the quantity of extrema of probability density function. The corresponding noise-induced phenomena are studied for three dynamical models in detail. An analysis of the error for the different order estimations of the shift of extrema for the probability density function is presented by the example of a linear model. Two scenarios of the transition between unimodal and bimodal forms of the stochastic attractor are investigated for systems with different types of cubic nonlinearity.
-
Равновесие по Бержу в модели олигополии Курно, с. 147-156В работе построено равновесие по Бержу в модели олигополии Курно. Проведено сравнение равновесий по Бержу и по Нэшу. Выявлены условия, при которых выигрыши игроков в ситуации равновесия по Бержу больше, чем их выигрыши в ситуации равновесия по Нэшу.
In many large areas of the economy (such as metallurgy, oil production and refining, electronics), the main competition takes place among several companies that dominate the market. The first models of such markets - oligopolies were described more than a hundred years ago in articles by Cournot, Bertrand, Hotelling. Modeling of oligopolies continues in many modern works. Moreover, in 2014 Nobel Prize in Economics “for his analysis of market power and regulation in sectors with few large companies” was received by Jean Tirole - the author of one of the best modern textbooks on the theory of imperfect competition “The Theory of Industrial Organization”. The main idea of all these publications, studying the behavior of oligopolies, is that every company is primarily concerned with its profits. This approach meets the concept of Nash equilibrium and is actively used in modeling the behavior of players in a competitive market. The exact opposite of such “selfish” equilibrium is “altruistic” concept of Berge equilibrium. In this approach, each player, without having to worry about himself, choose his actions (strategies) trying to maximize the profits of all other market participants. This concept called Berge equilibrium appeared in Russia in 1994 in reference to the France Claude Berge monograph published in 1957. The first works on the concept of Berge equilibrium belong to K.S. Vaisman and V.I. Zhukovskii. Once outside Russia, the concept of “Berge equilibrium” is slowly gaining popularity. To day, the number of publications related to this balance is already measured in tens. However, all of these items are limited to purely theoretical issues, or, in general, to psychology applications. Works devoted to the study of Berge equilibrium in economic problems, were not seen until now. It's probably a consequence of Martin Shubik's review (“… no attention is paid to the application to the economy. … the book is of little interest for economists”) of the Berge's book, it “scared” economists for a long time. However, it is not so simple. In this article, Berge equilibrium is considered in Cournot oligopoly, its relation to Nash equilibrium is studied. Cases are revealed in which players gain more profit by following the concept of Berge equilibrium, than by using strategies dictated by Nash equilibrium.
-
Пусть $T\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, — гомеоморфизм окружности с одной точкой излома $x_{b}$, в которой $T'(x)$ имеет разрыв первого рода и обе односторонние производные в точке $x_{b}$ строго положительные, и иррациональным числом вращения $\rho _{T}$. Предположим, что разложение числа вращения $\rho _{T}$ в непрерывную дробь, начиная с некоторого номера, совпадает с золотым сечением, т.е. $\rho _{T}=[m_{1},m_{2},\dots,m_{l},\,m_{l+1},\ldots],…,m_{s}=1$, $s> l>0$. Поскольку число вращения иррациональное, отображение $T$ является строго эргодическим, т.е. обладает единственной вероятностной инвариантной мерой $\mu_{T}$. В работе А.А. Джалилова и К.М. Ханина доказано, что вероятностная инвариантная мера $\mu_{G}$ любого гомеоморфизма окружности $G\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одной точкой излома $ x_{b}$ и иррациональным числом вращения $\rho _{G}$ является сингулярной относительно меры Лебега $\lambda$ на окружности, т.е. существует измеримое подмножество $A \subset S^{1}$ такое, что $\mu_{G}(A)=1$ и $\lambda(A)=0$. Мы построим термодинамический формализм для гомеоморфизмов $T_{b}\in C^{2+\varepsilon}(S^{1}\setminus \{x_{b}\})$, $\varepsilon>0$, с одним изломом в точке $x_{b}$ и числом вращения, равным золотому сечению, т.е. $\rho _{T}:=\frac{\sqrt{5}-1}{2}$. Существенно используя построенный термодинамический формализм, мы изучили показатели сингулярности инвариантной меры $\mu_{T}$ гомеоморфизма $T$.
гомеоморфизм окружности, точка излома, число вращения, инвариантная мера, термодинамический формализм
The thermodynamic formalism and exponents of singularity of invariant measure of circle maps with a single break, pp. 343-366Let $T \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, be a circle homeomorphism with one break point $x_{b}$, at which $ T'(x) $ has a discontinuity of the first kind and both one-sided derivatives at the point $x_{b} $ are strictly positive. Assume that the rotation number $\rho_{T}$ is irrational and its decomposition into a continued fraction beginning from a certain place coincides with the golden mean, i.e., $\rho_{T}=[m_{1}, m_{2}, \ldots, m_{l}, \, m_{l + 1}, \ldots] $, $ m_{s} = 1$, $s> l> 0$. Since the rotation number is irrational, the map $ T $ is strictly ergodic, that is, possesses a unique probability invariant measure $\mu_{T}$. A.A. Dzhalilov and K.M. Khanin proved that the probability invariant measure $ \mu_{G} $ of any circle homeomorphism $ G \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0$, with one break point $ x_{b} $ and the irrational rotation number $ \rho_{G} $ is singular with respect to the Lebesgue measure $ \lambda $ on the circle, i.e., there is a measurable subset of $ A \subset S^{1} $ such that $ \mu_ {G} (A) = 1 $ and $ \lambda (A) = 0$. We will construct a thermodynamic formalism for homeomorphisms $ T_{b} \in C^{2+ \varepsilon} (S^{1} \setminus \{x_{b} \})$, $\varepsilon> 0 $, with one break at the point $ x_{b} $ and rotation number equal to the golden mean, i.e., $ \rho_{T}:= \frac {\sqrt{5} -1}{2} $. Using the constructed thermodynamic formalism, we study the exponents of singularity of the invariant measure $ \mu_{T} $ of homeomorphism $ T $.
-
Асимптотическое распределение времени попадания для критических отображений на окружности, с. 365-383Хорошо известно, что преобразование ренормгруппы $\mathcal{R}$ имеет единственную неподвижную точку $f_ {cr}$ в пространстве критических $C^{3}$-гомеоморфизмов окружности с одной кубической критической точкой $x_{cr}$ и числом вращения равным золотому сечению $\overline{\rho}: =\frac{\sqrt{5} -1}{2}.$ Обозначим через $Cr(\overline{\rho})$ множество всех критических отображений окружности $C^ {1}$-сопряженных к $f_{cr}.$ Пусть $f\in Cr(\overline{\rho})$ и $\mu:=\mu_{f}$ --- единственная вероятностная инвариантная мера для $f.$ Зафиксируем $\theta \in (0,1).$ Для каждого $n\geq 1$ определим $c_{n}:=c_{n}(\theta)$ такое, что $\mu([x_{cr}, c_{n}]) = \theta\cdot\mu([x_{cr}, f^{q_{n}} (x_{cr})]),$ где $q_{n}$ --- время первого возврата линейного вращения $f_{\overline{\rho}}.$ Мы исследуем закон сходимости перемасштабированного точечного процесса времени попадания. Мы показываем, что предельное распределение сингулярно относительно меры Лебега.
It is well known that the renormalization group transformation $\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ Denote by $Cr(\overline{\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\in Cr(\overline{\rho})$ and let $\mu:=\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\theta \in(0,1).$ For each $n\geq1$ define $c_{n}:=c_{n}(\theta)$ such that $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\overline{\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w.r.t. the Lebesgue measure.
-
В качестве математической модели конфликта рассматривается бескоалиционная игра Γ двух участников при неопределенности. О неопределенности известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют. Для оценки риска в Γ привлекается функция риска по Сэвиджу (из принципа минимаксного сожаления). Качество функционирования участников конфликта оценивается по двум критериям - исходам и рискам, при этом каждый из них стремится увеличить исход и одновременно уменьшить риск. На основе синтеза принципов минимаксного сожаления и гарантированного результата, равновесности по Нэшу и оптимальности по Слейтеру, а также решения иерархической двухуровневой игры по Штакельбергу формализуется понятие гарантированного по исходам (выигрышам) и рискам равновесия в Γ. Приведен пример. Затем устанавливается существование такого решения в смешанных стратегиях при обычных ограничениях в математической теории игр.
стратегии, ситуации, неопределенности, бескоалиционная игра, равновесность по Нэшу, максимум и минимум по СлейтеруAs a mathematical model of conflict the non-cooperation game Γ of two players under uncertainty is considered. About uncertainty only the limits of change are known. Any characteristics of probability are absent. To estimate risk in Γ we use Savage functions of risk (from principle of minimax regret). The quality of functioning of conflict's participants is estimated according to two criteria: outcomes and risks, at that each of the participants tries to increase the outcome and simultaneously to decrease the risk. On the basis of synthesis of principles of minimax regret and guaranteed result, Nash equilibrium and Slater optimality as well as solution of the two-level hierarchical Stackelberg game, the notion of guaranteed equilibrium in Γ (outcomes (prize) and risks) is formalized. We give the example. Then the existence of such a solution in mixed strategies at usual limits in mathematical game theory is established.
-
Чистые фазы ферромагнитной модели Поттса с $q$ состояниями на дереве Кэли третьего порядка, с. 499-517Изучение фазового перехода является одной из центральных проблем статистической механики. Он происходит, когда для модели существуют по крайней мере две различные меры Гиббса. Известно, что для ферромагнитной модели Поттса с $q$ состояниями при достаточно низких температурах существуют не более $2^{q}-1$ трансляционно-инвариантных расщепленных мер Гиббса. Для непрерывных гамильтонианов меры Гиббса образуют непустое, выпуклое, компактное подмножество в пространстве всех вероятностных мер. Экстремальные меры, которые соответствуют крайним точкам этого множества, определяют чистые фазы. Мы изучаем экстремальность трансляционно-инвариантных расщепленных мер Гиббса для ферромагнитной модели Поттса с $q$ состояниями на дереве Кэли третьего порядка. Мы определяем области, в которых изучаемые трансляционно-инвариантные меры Гиббса для этой модели являются экстремальными или не являются экстремальными. Мы сводим описание мер Гиббса к решению нелинейного функционального уравнения, каждое решение которого соответствует одной предельной мере Гиббса.
Pure phases of the ferromagnetic Potts model with $q$ states on the Cayley tree of order three, pp. 499-517One of the main issues in statistical mechanics is the phase transition phenomenon. It happens when there are at least two distinct Gibbs measures in the model. It is known that the ferromagnetic Potts model with $q$ states possesses, at sufficiently low temperatures, at most $2^{q}-1$ translation-invariant splitting Gibbs measures. For continuous Hamiltonians, in the space of probability measures, the Gibbs measures form a non-empty, convex, compact set. Extremal measures, which corresponds to the extreme points of this set, determines pure phases. We study the extremality of the translation-invariant splitting Gibbs measures for the ferromagnetic $q$-state Potts model on the Cayley tree of order three. We define the regions where the translation-invariant Gibbs measures for this model are extreme or not. We reduce description of Gibbs measures to solving a non-linear functional equation, each solution of which corresponds to one Gibbs measure.
-
О нескейлинге вероятности протекания простой кубической решетки: теория и компьютерный эксперимент, с. 29-36На основе известных свойств функции вероятности протекания простой кубической решётки размера L=2 в приближении линейной связи порога протекания бесконечной решётки xc и среднего значения xcL конечной решётки введена нескейлинговая функция вероятности протекания для решётки размера L>2. Показано, что на пороге протекания нескейлинговые вероятности для всех ПК решёток одинаковы.
Компьютерные эксперименты на основе метода Монте-Карло согласуются с предлагаемой в работе теорией.Using known properties of the probability function for passing in a simple cubic lattice with L=2 in approximation of a linear relation between a passing threshold of an infinite lattice xc and average value xcL of a finite lattice, we introduce a nonscaling probability function of passing of a lattice with L>2. We show that on the passing threshold nonscaling probabilities for all simple cubic lattices are the same.
Computer experiments based on the Monte-Carlo method are in agreement with the theory proposed. -
Локальные вставки на основе динамического программирования в задаче маршрутизации с ограничениями, с. 56-75Рассматривается процедура встраивания оптимизируемых фрагментов маршрутных решений в глобальные решения «большой» задачи, определяемые эвристическими алгоритмами. Постановка задачи маршрутизации учитывает некоторые особенности инженерной задачи о последовательной резке деталей, имеющих каждая один внешний и, возможно, несколько внутренних контуров. Последние должны подвергаться резке раньше внешнего, что приводит к большому числу условий предшествования. Данные условия активно используются в интересах снижения сложности вычислений. Тем не менее размерность задачи остается достаточно большой, что, в частности, не позволяет применять «глобальное» динамическое программирование и вынуждает к использованию эвристических алгоритмов (исследуемая задача относится к числу труднорешаемых в традиционном понимании). Поэтому представляет интерес разработка методов коррекции решений, получаемых на основе упомянутых алгоритмов. В настоящей работе такая коррекция реализуется посредством замены фрагментов (упомянутых решений), имеющих умеренную размерность, оптимальными «блоками», конструируемыми на основе динамического программирования с локальными условиями предшествования, которые согласуются с ограничениями исходной «большой» задачи. Предлагаемая замена не ухудшает, а, в типичных случаях, улучшает качество исходного «эвристического» решения, что подтверждается вычислительным экспериментом на многоядерной ПЭВМ.
Предложенный алгоритм реализован в итерационном режиме: полученное после первой вставки на основе динамического программирования решение в виде пары «маршрут-трасса» принимается за исходное, для которого вновь конструируется вставка. При этом начало этой новой вставки выбирается случайно в пределах, определяемых возможностями формирования скользящего «окна» ощутимой, но все же достаточной для применения экономичной версии динамического программирования размерности. Далее процедура повторяется. Работа итерационного алгоритма иллюстрируется решением модельных задач, включая варианты с достаточно плотной «упаковкой» заготовок деталей на листе, что типично для машиностроительного производства.
The article is concerned with the procedure of insertion of optimizable fragments of route solutions into the global solutions of the «big» problem defined by heuristic algorithms. Setting of the route problem takes into account some singularities of the engineering problem about the sequential cutting of details each having one exterior and probably several interior contours. The latter ones must be subjected to cutting previously in comparison with the exterior contour, which leads to a great number of given preceding conditions. These conditions are actively used to decrease the computational complexity. Nevertheless, the problem dimensionality remains sufficiently large that does not permit to use “global’’ dynamic programming and forces heuristic algorithms to be used (the problem under investigation is a hard-solvable problem in the traditional sense). Therefore, it is interesting to develop the methods for correction of solutions based on the above-mentioned algorithms. In the present investigation, such correction is realized by the replacement of fragments (of the above-mentioned solutions) having a moderate dimensionality by optimal “blocks’’ constructed by dynamic programming with local preceding conditions which are compatible with the constraints of the initial “big’’ problem. The proposed replacement does not deteriorate, but, in typical cases, improves the quality of the initial heuristic solution. This is verified by the computing experiment on multi-core computer.
The proposed algorithm is realized in the iterated regime: the solution (in the form of “route-trace’’) obtained after the first insertion on the basis of dynamic programming is taken as an initial solution for which the insertion is constructed again. In addition, the beginning of the new insertion is chosen randomly in the bounds defined by the possibilities of formation of a sliding “window’’ of the appreciable dimensionality which is in fact sufficient for the employment of the economical version of dynamic programming. Further, the procedure is repeated. The operation of the iterated algorithm is illustrated by solution of model problems including the versions with sufficiently dense “packing’’ of parts on a sheet, which is typical for the engineering production.
-
О способах эксплуатации популяции, заданной разностным уравнением со случайными параметрами, с. 211-227Рассматривается модель эксплуатируемой однородной популяции, заданная разностным уравнением, зависящим от случайных параметров. При отсутствии эксплуатации развитие популяции описывается уравнением $$X(k+1)=f\bigl(X(k)\bigr), \quad k=1,2,\ldots,$$ где $X(k)$ — размер популяции или количество биоресурса в момент времени $k,$ $f(x)$ — вещественная дифференцируемая функция, заданная на отрезке $I=[0,a],$ такая, что $f(I)\subseteq I.$ В моменты времени $k=1,2,\ldots$ из популяции извлекается случайная доля ресурса $\omega(k)\in\Omega\subseteq[0,1]$. Процесс сбора может быть остановлен, когда доля собранного ресурса превысит некоторое значение $u(k)\in[0,1)$, чтобы сохранить по возможности большую часть популяции. Тогда доля добываемого ресурса будет равна $\ell(k)=\min (\omega(k),u(k)).$ Средняя временная выгода $H_*$ от извлечения ресурса равна пределу среднего арифметического от количества добываемого ресурса $X(k)\ell(k)$ в моменты времени $1,2,\ldots,k$ при $k\to\infty.$ Решается задача выбора управления процессом промыслового изъятия, при котором значение $H_*$ можно оценить снизу с вероятностью единица по возможности наибольшим числом. Оценки средней временной выгоды существенно зависят от свойств функции $f(x),$ определяющей динамику популяции; данные оценки получены для трех классов уравнений с функциями $f(x),$ обладающими определенными свойствами. Результаты работы проиллюстрированы численными примерами, построенными методом динамического программирования на основании того, что исследуемый процесс эксплуатации популяции является марковским процессом принятия решений.
разностные уравнения, уравнения со случайными параметрами, оптимальная эксплуатация, средняя временная выгодаWe consider a model of an exploited homogeneous population given by a difference equation depending on random parameters. In the absence of exploitation, the development of the population is described by the equation $$X(k+1)=f\bigl(X(k)\bigr), \quad k=1,2,\ldots,$$ where $X(k)$ is the population size or the amount of bioresources at time $k,$ $f(x)$ is a real differentiable function defined on $I=[0,a]$ such that $f(I)\subseteq I.$ At moments $k=1,2,\ldots$, a random fraction of the resource $\omega(k)\in\omega\subseteq[0,1]$ is extracted from the population. The harvesting process can be stopped when the share of the harvested resource exceeds a certain value of $u(k)\in[0,1)$ to keep as much of the population as possible. Then the share of the extracted resource will be equal to $\ell(k)=\min (\omega(k),u(k)).$ The average temporary benefit $H_*$ from the extraction of the resource is equal to the limit of the arithmetic mean from the amount of extracted resource $X(k)\ell(k)$ at moments $1,2,\ldots,k$ when $k\to\infty.$ We solve the problem of choosing the control of the harvesting process, in which the value of $H_*$ can be estimated from below with probability one, as large a number as possible. Estimates of the average time benefit depend on the properties of the function $f(x)$, determining the dynamics of the population; these estimates are obtained for three classes of equations with $f(x)$, having certain properties. The results of the work are illustrated, by numerical examples using dynamic programming based on, that the process of population exploitation is a Markov decision process.
-
Для управляемых систем со случайными параметрами исследуются свойства статистической инвариантности и статистически слабой инвариантности, выполненные с вероятностью единица. Получены достаточные условия инвариантности заданного множества относительно управляемой системы, выраженные в терминах функций Ляпунова и динамической системы сдвигов. Доказано обобщение теоремы С.А. Чаплыгина о дифференциальных неравенствах и получены условия существования верхнего решения для задачи Коши с кусочно непрерывной по t правой частью без предположения единственности решения.
управляемые системы, динамические системы, дифференциальные включения, статистически инвариантные множества с вероятностью единицаWe investigate the properties of statistical invariance and statistically weak invariance with probability one for control systems with random parameters. We obtain the sufficient conditions for the invariance of the given set with respect to the control system formulated in terms of Lyapunov functions and the dynamical system of shifts. We prove the extension for the theorem of S.A. Chaplygin about differential inequalities and obtain the conditions of existence for the upper solution of Cauchy problem with piecewise continuous on t right-hand part without assumption of uniqueness of solution.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.