Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'parabolic equation':
Найдено статей: 20
  1. Данная работа посвящена постановке и исследованию однозначной разрешимости краевых задач (типа задачи Дарбу, задачи Трикоми) для нагруженного интегро-дифференциального уравнения третьего порядка с гиперболическим и параболо-гиперболическим оператором. Существование и единственность решения краевой задачи доказана методом интегральных уравнений. Задачи эквивалентным образом сводятся к интегральным уравнениям Вольтерра со сдвигом. При достаточных условиях на заданные функции и коэффициенты доказывается однозначная разрешимость полученных интегральных уравнений.

    In this paper, the unique solvability of the boundary value problems (of a type similar to the Darboux problem and the Tricomi problem) of a loaded third order integro-differential equation with hyperbolic and parabolic-hyperbolic operators is proved by method of integral equations. The problem is similarly reduced to a Volterra integral equation with a shift. Under sufficient conditions for given functions and coefficients the unique solvability is proved for the solution of obtained integral equations.

  2. Рассмотрена математическая модель конкуренции в условиях биологической инвазии, записываемая в виде системы нелинейных уравнений параболического типа. Изучается конкуренция двух близкородственных видов — резидента и инвайдера. Динамика популяций на неоднородном ареале определяется локальным взаимодействием и диффузионным распространением. Для популяции инвайдера учитывается межвидовой таксис и направленная миграция, вызванная неоднородностью жизненных условий. В вычислительных экспериментах определены наборы миграционных параметров, отвечающих различным инвазивным сценариям. Дан анализ влияния начальных распределений на конкурентное исключение и сосуществование видов.

    A mathematical model of competition under conditions of biological invasion, written in the form of a system of nonlinear parabolic equations, is considered. The competition of two closely related species — resident and invader — is studied. The dynamics of populations in a heterogeneous area is determined by local interaction and diffusion. For the invader population, interspecific taxis and directed migration caused by heterogeneity of living conditions are taken into account. In computational experiments, sets of migration parameters corresponding to various invasion scenarios are determined. An analysis of the influence of initial distributions on competitive exclusion and coexistence of species is given.

  3. Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.

    A convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.

  4. В статье рассматривается аппроксимация функции цены антагонистической дифференциальной игры с критерием, задаваемым условием минимизации некоторой величины вдоль реализовавшейся траектории, решениями стохастических игр с непрерывным временем и моментом остановки, управляемым одним из игроков. Отметим, что если в качестве вспомогательной игры выбрана стохастическая дифференциальная игра, то ее функция цены задается параболическим уравнением второй степени в частных производных с дополнительными ограничениями в форме неравенств, в то время как для случая вспомогательной игры с динамикой, задаваемой марковской цепью, функция цены определяется системой обыкновенных дифференциальных уравнений с дополнительными ограничениями. Развиваемый в статье метод аппроксимации основан на концепции стохастического поводыря, впервые предложенном в работах Н.Н. Красовского и А.Н. Котельниковой.

    The paper is concerned with the approximation of the value function of the zero-sum differential game with the minimal cost, i.e., the differential game with the payoff functional determined by the minimization of some quantity along the trajectory by the solutions of continuous-time stochastic games with the stopping governed by one player. Notice that the value function of the auxiliary continuous-time stochastic game is described by the Isaacs–Bellman equation with additional inequality constraints. The Isaacs–Bellman equation is a parabolic PDE for the case of stochastic differential game and it takes a form of system of ODEs for the case of continuous-time Markov game. The approximation developed in the paper is based on the concept of the stochastic guide first proposed by Krasovskii and Kotelnikova.

  5. Для задачи оптимального управления линейным параболическим уравнением с распределенным, начальным и граничным управлениями и с операторным полуфазовым ограничением типа равенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собой регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации. Приводятся результаты модельных расчетов при решении конкретной задачи оптимального управления, иллюстрирующих работу алгоритма, основанного на регляризованном итерационном принципе максимума Понтрягина. В качестве конкретной оптимизационной задачи рассмотрена задача поиска минимальной по норме тройки управлений при операторном ограничении-равенстве в финальный момент времени, или, другими словами, обратная задача финального наблюдения по поиску ее нормального решения.

    The stable sequential Pontryagin maximum principle or, in other words, the regularized Pontryagin maximum principle in iterative form is formulated for the optimal control problem of a linear parabolic equation with distributed, initial and boundary controls and operator semiphase equality constraint. The main difference between it and the classical Pontryagin maximum principle is that, firstly, it is formulated in terms of minimizing sequences, secondly, the iterative process occurs in dual space, and thirdly, it is resistant to error of raw data and gives a minimizing approximate solution in the sense of J. Warga. So it is a regularizing algorithm. The proof of the regularized Pontryagin maximum principle in iterative form is based on the dual regularization methods and iterative dual regularization. The results of model calculations of the concrete optimal control problem illustrating the work of the algorithm based on the regularized iterative Pontryagin maximum principle are presented. The problem of finding a control triple with minimal norm under a given equality constraint at the final instant of time or, in other words, the inverse final observation problem of finding a normal solution is used as a concrete model optimal control problem.

  6. Исследуется обратная задача определения многомерного ядра интегрального члена, зависящего от временной переменной $t$ и $ (n-1)$-мерной пространственной переменной $x'=\left(x_1,\ldots, x_ {n-1}\right)$ из $n$-мерного уравнения теплопроводности с переменным коэффициентом теплопроводности. Прямую задачу представляет задача Коши для этого уравнения. Интегральный член имеет вид свертки по времени ядра и решения прямой задачи. Дополнительное условие для решения обратной задачи задается решение прямой задачи на гиперплоскости $x_n = 0.$ В начале изучаются свойства решения прямой задачи. Для этого эта задача сводится к решению интегрального уравнения второго порядка вольтерровского типа и к нему применяется метод последовательных приближений. Далее поставленная обратная задача приводится к двум вспомогательным задачам, дополнительное условие второй из них содержит неизвестное ядро вне интеграла. Затем вспомогательные задачи заменяются эквивалентной замкнутой системой интегральных уравнений вольтерровского типа относительно неизвестных функций. Применяя метод сжатых отображений к этой системе в классе гёльдеровских функций доказываем основной результат статьи, который является теоремой локального существования и единственности решения обратной задачи.

    The inverse problem of determining a multidimensional kernel of an integral term depending on a time variable $t$ and $ (n-1)$-dimensional spatial variable $x'=\left(x_1,\ldots, x_ {n-1}\right)$ in the $n$-dimensional heat equation with a variable coefficient of thermal conductivity is investigated. The direct problem is the Cauchy problem for this equation. The integral term has the time convolution form of kernel and direct problem solution. As additional information for solving the inverse problem, the solution of the direct problem on the hyperplane $x_n = 0$ is given. At the beginning, the properties of the solution to the direct problem are studied. For this, the problem is reduced to solving an integral equation of the second kind of Volterra-type and the method of successive approximations is applied to it. Further the stated inverse problem is reduced to two auxiliary problems, in the second one of them an unknown kernel is included in an additional condition outside integral. Then the auxiliary problems are replaced by an equivalent closed system of Volterra-type integral equations with respect to unknown functions. Applying the method of contraction mappings to this system in the Hölder class of functions, we prove the main result of the article, which is a local existence and uniqueness theorem of the inverse problem solution.

  7. Изучается многомерный случай нелинейной системы реакции-диффузии, моделируемый системой двух уравнений параболического типа со степенными нелинейностями. Такого рода системы можно применять для моделирования процесса распространения в пространстве взаимодействующих распределенных формаций роботов двух типов. Такие уравнения описывают также процессы нелинейной диффузии в реагирующих двухкомпонентных сплошных средах. Предложен оригинальный вариант метода редукции, сводящий построение зависимости точного решения от пространственных переменных к решению уравнения Гельмгольца, а зависимости от времени — к решению линейной системы обыкновенных дифференциальных уравнений. Построен ряд примеров многопараметрических семейств точных решений, задаваемых элементарными функциями.

    Kosov A.A., Semenov E.I., Tirskikh V.V.
    On multidimensional exact solutions of a nonlinear reaction-diffusion system, pp. 225-239

    We study a multidimensional case of a nonlinear reaction-diffusion system modeled by a system of two parabolic equations with power nonlinearities. Such systems can be used to simulate the process of propagation in space of interacting distributed formations of robots of two types. Such equations also describe the processes of nonlinear diffusion in reacting two-component continuous media. An original version of the reduction method is proposed, which reduces the construction of the dependence of the exact solution on spatial variables to the solution of the Helmholtz equation, and the dependence on time to the solution of a linear system of ordinary differential equations. A number of examples of multiparameter families of exact solutions given by elementary functions are constructed.

  8. Изместьев И.В., Ухоботов В.И., Кудрявцев К.Н.
    Численное решение задачи управления параболической системой с помехами, с. 33-47

    Рассматривается управляемая параболическая система, которая описывает нагрев заданного количества стержней. Функции плотности внутренних источников тепла стержней точно неизвестны, а заданы только отрезки их изменения. На концах стержней находятся управляемые источники тепла и помехи. Цель выбора управления заключается в том, чтобы привести вектор средних температур стержней в фиксированный момент времени на заданный компакт при любых допустимых функциях плотности внутренних источников тепла и любых допустимых реализациях помех. После замены переменных получена задача управления системой обыкновенных дифференциальных уравнений при наличии неопределенности. Используя численный метод, для этой задачи построено множество разрешимости. Выполнены модельные расчеты.

    Izmest'ev I.V., Ukhobotov V.I., Kudryavtsev K.N.
    Numerical solution of a control problem for a parabolic system with disturbances, pp. 33-47

    A controlled parabolic system that describes the heating of a given number of rods is considered. The density functions of the internal heat sources of the rods are not known exactly, and only the segments of their change are given. At the ends of the rods there are controlled heat sources and disturbances. The goal of the choice of control is to lead the vector of average temperatures of the rods at a fixed time to a given compact for any admissible functions of the density of internal heat sources and any admissible realizations of disturbances. After replacing variables, the problem of controlling a system of ordinary differential equations in the presence of uncertainty is obtained. Using a numerical method, a solvability set is constructed for this problem. Model calculations are carried out.

  9. Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$; $F[.;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Ранее для операторного уравнения $x=F[x;u]$, $x\in W$, автором была введена система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Было установлено, что для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения, а также установлены соответствующие достаточные условия. В данной статье рассматриваются дальнейшие примеры приложения этой теории: нелинейное волновое уравнение, сильно нелинейное волновое уравнение, нелинейное уравнение теплопроводности, сильно нелинейное параболическое уравнение.

    Let $U$ be the set of admissible controls, $T>0$, and let $W[0;\tau]$, $\tau\in(0;T]$, be a scale of Banach spaces such that the set of restrictions of functions from $W=W[0;T]$ to $[0;\tau]$ coincides with $W[0;\tau]$; let $F[.;u]\colon W\to W$ be a controlled Volterra operator, $u\in U$. Earlier, for the operator equation $x=F[x;u]$, $x\in W$, the author introduced a comparison system in the form of a functional integral equation in the space $\mathbf{C}[0;T]$. It was established that to preserve (under small perturbations of the right-hand side) the global solvability of the operator equation, it is sufficient to preserve the global solvability of the specified comparison system, and the corresponding sufficient conditions were established. In this paper, further examples of application of this theory are considered: nonlinear wave equation, strongly nonlinear wave equation, nonlinear heat equation, strongly nonlinear parabolic equation.

  10. В данной работе исследуется обратная задача для одномерного интегро-дифференциального уравнения теплопроводности с нелокальными начально-краевыми и интегральными условиями переопределения. Мы использовали метод Фурье и принцип Шаудера для исследования разрешимости прямой задачи. Далее задача сводится к эквивалентной замкнутой системе интегральных уравнений относительно неизвестных функций. Существование и единственность решения интегральных уравнений доказывается с помощью сжимающего отображения. Наконец, с помощью эквивалентности получается существование и единственность классического решения.

    In this paper, an inverse problem for a one-dimensional integro-differential heat equation is investigated with nonlocal initial-boundary and integral overdetermination conditions. We use the Fourier method and the Schauder principle to investigate the solvability of the direct problem. Further, the problem is reduced to an equivalent closed system of integral equations with respect to unknown functions. Existence and uniqueness of the solution of the integral equations are proved using a contractive mapping. Finally, using the equivalency, the existence and uniqueness of the classical solution is obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref