Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе изучается влияние цветного шума на равновесные режимы нелинейных динамических систем. Для исследования реакции системы на малые возмущения используется асимптотический подход, развивающий технику функций стохастической чувствительности. Стохастическая чувствительность равновесия в общей многомерной динамической системе задается некоторой матрицей. Для этой матрицы стохастической чувствительности в работе получено матричное алгебраическое уравнений. Точное решение этого уравнения дается для важного класса нелинейных осцилляторов с возмущениями в форме цветных шумов. Эта теория применяется к параметрическому исследованию отклика электронного генератора с жестким возбуждением на цветные шумы с различным временем корреляции. В работе исследована зависимость дисперсии случайных состояний от характерного времени корреляции. Показано, что эта зависимость может быть немонотонной и иметь максимумы, соответствующие резонансам. В работе обсуждается вероятностный механизм стохастической генерации колебаний больших амплитуд, вызванной цветным шумом.
цветной шум, время корреляции, стохастическая чувствительность, электронный генератор, стохастическая возбудимостьThe influence of colored noise on the equilibrium regimes of nonlinear dynamical systems is investigated. To study the response of the system to small perturbations, we use an asymptotic approach that develops the stochastic sensitivity function technique. The stochastic sensitivity of equilibrium in a general multidimensional dynamical system is defined by some matrix. For this stochastic sensitivity matrix, we obtain a matrix algebraic equation. An exact solution of this equation is given for an important class of nonlinear oscillators with perturbations in the form of colored noises. This theory is applied to the parametric study of the response of the electronic generator with hard excitation to colored noises with various correlation times. The dependence of the dispersion of random states on the characteristic correlation time is investigated. It is shown that this dependence can be nonmonotonic and have maxima corresponding to the resonances. The paper discusses the probabilistic mechanism of the stochastic generation of large-amplitude oscillations caused by color noise.
-
Рассматриваются структурные, аппроксимативные и спектральные свойства нётеровых операторов индекса n и (−n), действующих между банаховыми пространствами B и D, где D изоморфно прямой сумме пространства B и конечномерного пространства E размерности n. Раскрыта роль теоремы С.М. Никольского о фредгольмовом операторе в изучении указанных свойств, а также в вопросе разрешимости уравнений с краевыми неравенствами. В случае сепарабельного гильбертова пространства B для однозначно разрешимых краевых задач предлагается основанная на разложении Э. Шмидта компактного оператора схема дискретизации, которая позволяет применить абстрактный вариант теоремы Рябенького–Филиппова о связи аппроксимации, устойчивости и сходимости.
реконструктивное моделирование, факторизация линейных операторов, возмущения минимального ранга, минимальное семейство циклических векторов, уравнения с краевыми неравенствамиThere are considered the structural, approximated and spectral properties of Fredholm operators of index n and (−n), acting between Banach spaces B and D, where D is isomorphic to the direct sum of B and finite–dimensional space E of dimension n. There is demonstrated the role of S.M. Nikol’skii theorem on Fredholm operator in the study of these properties as well as in the issue of solvability equations with boundary inequalities. For boundary value problems which are uniquely solvable, in the case of a separable Hilbert space B, based on Schmidt decomposition for a compact operator a scheme of discretization is proposed, and it allows application of an abstract version of Ryaben’kii–Filippov theorem on the relationship of approximation, stability and convergence.
-
Изучается задача о воздействии двухчастотных квазипериодических возмущений на системы, близкие к произвольным нелинейным двумерным гамильтоновым в случае, когда соответствующие возмущенные автономные системы имеют двойной предельный цикл. Ее решение имеет важное значение как для теории синхронизации колебаний, так и для теории бифуркаций динамических систем. В случае соизмеримости собственной частоты невозмущенной системы с частотами квазипериодического возмущения имеет место резонанс. Выводятся усредненные системы, позволяющие установить структуру резонансной зоны, то есть описать поведение решений в окрестностях индивидуальных резонансных уровней. Исследование этих систем позволяет установить возможные бифуркации, возникающие при отклонении резонансного уровня от уровня невозмущенной системы, порождающего двойной предельный цикл в возмущенной автономной системе. Полученные теоретические результаты применяются при исследовании двухчастотного квазипериодически возмущенного уравнения маятникового типа и иллюстрируются при помощи численных вычислений.
The problem of the effect of two-frequency quasi-periodic perturbations on systems close to arbitrary nonlinear two-dimensional Hamiltonian ones is studied in the case when the corresponding perturbed autonomous systems have a double limit cycle. Its solution is important both for the theory of synchronization of nonlinear oscillations and for the theory of bifurcations of dynamical systems. In the case of commensurability of the natural frequency of the unperturbed system with frequencies of quasi-periodic perturbation, resonance occurs. Averaged systems are derived that make it possible to ascertain the structure of the resonance zone, that is, to describe the behavior of solutions in the neighborhood of individual resonance levels. The study of these systems allows determining possible bifurcations arising when the resonance level deviates from the level of the unperturbed system, which generates a double limit cycle in a perturbed autonomous system. The theoretical results obtained are applied in the study of a two-frequency quasi-periodic perturbed pendulum-type equation and are illustrated by numerical computations.
-
Ряд задач в теории характеристических показателей Ляпунова линейных дифференциальных систем
ẋ=A(t)x, x∈Rn, t≥0,
сводится к изучению влияния возмущений коэффициентов на характеристические показатели и другие асимптотические инварианты возмущенных систем
ẏ=A(t)y+Q(t)y, y∈Rn, t≥0.
При этом возмущения коэффициентов предполагаются принадлежащими некоторым классам малости, то есть определенным подмножествам множества KCn(R+) кусочно-непрерывных и ограниченных на положительной полуоси n×n-матриц. Обычно используемые классы возмущений, например бесконечно малые (исчезающие в бесконечности), экспоненциально убывающие либо суммируемые на полуоси, задаются конкретными аналитическими условиями, но общее определение класса малости в теории показателей отсутствует. На основе анализа свойств общепринятых классов малости нами предложено аксиоматическое определение класса малости возмущений коэффициентов линейных дифференциальных систем, которому удовлетворяет большинство таких классов, используемых в теории характеристических показателей. Это определение достаточно громоздко. Для более компактной характеристики классов малости предложено использовать следующее их свойство: множество возмущений удовлетворяет предложенному определению класса малости тогда и только тогда, когда оно является полной матричной алгеброй над произвольным нетривиальным идеалом кольца функций KC1(R+) (с поточечным умножением), содержащим хотя бы одну строго положительную функцию.
A number of problems in the Lyapunov exponent theory of linear differential systems
ẋ=A(t)x, x∈Rn, t≥0,
can be reduced to an investigation of the influence of coefficient perturbations on characteristic exponents and other asymptotic invariants of perturbed systems
ẏ=A(t)y+Q(t)y, y∈Rn, t≥0.
Here perturbations are assumed to be in some classes of smallness, i.e. certain subsets of the space KCn(R+) of piecewise continuous and bounded on the positive semiaxis n×n-matrices. Commonly used classes of perturbations, such as infinitesimal (vanishing at infinity), exponentially decaying or integrable on the positive semiaxis are defined by specific analytical conditions, but there is no general definition of the smallness class. By analyzing the desirable properties of commonly used classes, we propose an axiomatic definition for this notion, such that most of classes used in the theory of characteristic exponents satisfy this definition. Since the axioms are somewhat cumbersome, for more compact characterization we propose to use the following property of smallness classes: the set of perturbation satisfies the proposed definition if and only if it is a complete matrix algebra over an arbitrary non-trivial ideal of functional ring KC1(R+) (with the pointwise multiplication) containing at least one strictly positive function.
-
Движение трех точечных вихрей в случае, если один из них проходит через центр завихренности, с. 37-51Изучается движение трех точечных вихрей в случае, если центр завихренности лежит на траектории одного из вихрей или находится достаточно близко от нее. Численно исследованы траектории вихрей в широком диапазоне изменения их интенсивностей. Вычислены асимптотики траекторий вихрей для конфигураций, близких к сингулярной или коллинеарной.
We use numerical analysis and theory of perturbation to investigate the motion of three point vortices under the condition that one of them passes through the vorticity center.
-
Нормальные формы уравнений термодинамики, с. 58-67В статье рассматриваются применения теории нормальных форм к вопросам термодинамики неидеальных сред, описываемых термическими уравнениями состояния. Исходя из фундаментального уравнения Гиббса-Дюгема, вводится понятие контактной эквивалентности таких уравнений. Приводятся основные результаты формальной теории нормальных форм для контактных систем с полиномиальным квазиоднородным невозмущенным гамильтонианом, формулируются определение нормальной формы контактного гамильтониана и теорема о нормализации. С точки зрения приложений, рассматриваются модели смеси неидеальных газов и классической водородной плазмы. Для уравнения состояния смеси неидеальных газов, заданного в форме вириального разложения, показывается, что оно контактно эквивалентно уравнению состояния смеси идеальных газов. Кроме того, приводятся явные формулы для одного из возможных нормализующих преобразований. Нетривиальность физических эффектов, вносимых в модель идеальной среды резонансными возмущениями, иллюстрируется на примере возмущенного уравнения модели Дебая-Хюккеля водородной плазмы. Для этой модели находятся младшие члены возмущения в нормальной форме, и объясняется их физический смысл.
нормальные формы, уравнения состояния, неидеальные среды, вириальное разложение, плазма Дебая-ХюккеляIn this article we consider applications of the theory of normal forms to the questions of thermodynamics of non-ideal media described by thermal equations of state. On the basis of the fundamental Gibbs-Duhem equation the notion of contact equivalence of such equations is introduced. Basic results from formal theory of normal forms for contact systems with a polynomial quasi-homogeneous unperturbed Hamiltonian are given, the definition of normal form of a contact Hamiltonian and the normalization theorem are formulated. From the application point of view, models for a mixture of non-ideal gases and classical hydrogen plasma are considered. For the equation of state of a mixture of non-ideal gases given in the form of a virial expansion it is shown that this equation is contact-equivalent to the equation of state of a mixture of ideal gases. Furthermore, explicit formulae for one of the possible normalizing transformations are given. Non-triviality of the physical effects that take place due to the impact of resonant perturbations on a model of ideal medium is illustrated by the example of perturbed equation for the Debye-Hückel model of hydrogen plasma. For this model the lowest terms of the perturbation in normal form are determined and their physical meaning is explained.
-
Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$; $F[.;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Ранее для операторного уравнения $x=F[x;u]$, $x\in W$, автором была введена система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Было установлено, что для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения, а также установлены соответствующие достаточные условия. В данной статье рассматриваются дальнейшие примеры приложения этой теории: нелинейное волновое уравнение, сильно нелинейное волновое уравнение, нелинейное уравнение теплопроводности, сильно нелинейное параболическое уравнение.
эволюционное вольтеррово уравнение второго рода общего вида, функционально-интегральное уравнение, система сравнения, сохранение глобальной разрешимости, единственность решения, нелинейное волновое уравнение, нелинейное параболическое уравнениеLet $U$ be the set of admissible controls, $T>0$, and let $W[0;\tau]$, $\tau\in(0;T]$, be a scale of Banach spaces such that the set of restrictions of functions from $W=W[0;T]$ to $[0;\tau]$ coincides with $W[0;\tau]$; let $F[.;u]\colon W\to W$ be a controlled Volterra operator, $u\in U$. Earlier, for the operator equation $x=F[x;u]$, $x\in W$, the author introduced a comparison system in the form of a functional integral equation in the space $\mathbf{C}[0;T]$. It was established that to preserve (under small perturbations of the right-hand side) the global solvability of the operator equation, it is sufficient to preserve the global solvability of the specified comparison system, and the corresponding sufficient conditions were established. In this paper, further examples of application of this theory are considered: nonlinear wave equation, strongly nonlinear wave equation, nonlinear heat equation, strongly nonlinear parabolic equation.
-
Краевые задачи теории функции комплексных переменных эффективно используются при исследовании равновесия однородных упругих сред. Наиболее сложные системы краевых задач соответствуют случаю, когда упругое тело обладает анизотропными свойствами. Анизотропия среды приводит к появлению в краевых условиях функции сдвига, которая в общем случае нарушает аналитичность искомых функций. В работе проводится исследование систем краевых задач со сдвигом для аналитических векторов, соответствующих трем основным задачам теории упругости (первая, вторая и смешанная задачи). Системы аналитических векторов со сдвигом сводятся к равносильным системам из краевых задач Гильберта для аналитических функций, содержащих интегральные члены со слабой особенностью. Полученное общее решение основных краевых задач анизотропной теории упругости позволяет проверить указанные задачи на устойчивость относительно возмущений краевых условий и формы контура. Такое исследование актуально в связи с необходимостью применения приближенных численных методов к решению краевых задач со сдвигом. Основным результатом работы следует считать доказательство устойчивости систем векторных краевых задач со сдвигом для аналитических функций на пространстве Гёльдера, соответствующих основным задачам теории упругости для анизотропных тел относительно изменения краевых условий и формы контура.
Stability of mathematical models of the main problems of the anisotropic theory of elasticity, pp. 112-124The boundary problems of the complex-variable function theory are effectively used while investigating equilibrium of homogeneous elastic mediums. The most complicated systems of the boundary value problems correspond to the case when an elastic body exhibits anisotropic properties. Anisotropy of the medium results in the drift of boundary conditions of the function that in general disrupts analyticity of the functions of interest. The paper studies systems of the boundary value problems with drift for analytic vectors corresponding to the primal elastic problems (first, second and mixed problems). Systems of analytic vectors with drift are reduced to equivalent systems of Hilbert boundary value problems for analytic functions with weak singularity integrators. The obtained general solution of the primal boundary value problems for the anisotropic theory of elasticity allows us to check the above problems for stability with respect to perturbations of boundary value conditions and contour shape. The research is relevant as there is necessity to apply approximate numerical methods to the boundary value problems with drift. The main research result comes to be a proof of stability of the systems of the vector boundary value problems with drift for analytic functions on the H\"older space corresponding to the primal problems of the elastic theory for anisotropic bodies in the case of change in the boundary value conditions and contour shape.
-
Бесконечные сети Шрёдингера, с. 640-650Конечно-разностные модели дифференциальных уравнений в частных производных, такие как уравнения Лапласа или Пуассона, приводят к конечной сети. Дискретизированное уравнение на неограниченном множестве на плоскости или в пространстве приводит к бесконечной сети. В бесконечной сети оператор Шрёдингера (возмущенный оператор Лапласа, $q$-оператор Лапласа) определяется для развития теории дискретного потенциала, которая имеет модель в уравнении Шрёдингера в евклидовых пространствах. Исследуется связь между $\Delta$-теорией оператора Лапласа и $\Delta_q$-теорией. В $\Delta_q$-теории уравнение Пуассона решается, если сеть является деревом, и в общем случае получается каноническое представление для неотрицательных $q$-супергармонических функций.
$q$-гармонические функции, $q$-супергармонические функции, сеть Шрёдингера, гиперболическая сеть Шрёдингера, параболическая сеть Шрёдингера, интегральное представление
Infinite Schrödinger networks, pp. 640-650Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrödinger operator (perturbed Laplace operator, $q$-Laplace) is defined to develop a discrete potential theory which has a model in the Schrödinger equation in the Euclidean spaces. The relation between Laplace operator $\Delta$-theory and the $\Delta_q$-theory is investigated. In the $\Delta_q$-theory the Poisson equation is solved if the network is a tree and a canonical representation for non-negative $q$-superharmonic functions is obtained in general case.
-
О движении динамически симметричного спутника в одном случае кратного параметрического резонанса, с. 594-612Исследуются движения динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите в окрестности его стационарного вращения (цилиндрической прецессии). Рассматриваются значения параметров, для которых в предельном случае круговой орбиты одна из частот малых линейных колебаний равна единице, а другая нулю, и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен двум, а также малая окрестность этой резонансной точки в трехмерном пространстве параметров. Построены резонансные периодические движения спутника, аналитические по дробным степеням малого параметра (эксцентриситета орбиты центра масс спутника), проведен строгий нелинейный анализ их устойчивости. Методами КАМ-теории описаны двух- и трехчастотные условно-периодические движения спутника, с частотами разного порядка по малому параметру. Обсуждается ряд общетеоретических вопросов, касающихся рассматриваемого кратного параметрического резонанса в близких к автономным, периодических по времени гамильтоновых системах с двумя степенями свободы. Построено несколько качественно различных вариантов областей параметрического резонанса. Показано, что в общем случае характер нелинейных резонансных колебаний системы определяется системой первого приближения по малому параметру.
кратный параметрический резонанс, нормализация, нелинейные колебания, устойчивость, периодические движения, теория КАМ, спутник, цилиндрическая прецессия
On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance, pp. 594-612The paper studies the motions of a dynamically symmetric satellite (rigid body) relative to the center of mass in the central Newtonian gravitational field on a weakly elliptical orbit in the neighborhood of its stationary rotation (cylindrical precession). We consider the values of the parameters for which, in the limiting case of a circular orbit, one of the frequencies of small linear oscillations is equal to unity and the other is equal to zero, and the rank of the coefficient matrix of the linearized equations of the perturbed motion is equal to two, as well as a small neighborhood of this resonant point in the three-dimensional space of parameters. The resonant periodic motions of the satellite, analytical in fractional powers of a small parameter (the eccentricity of the orbit of the satellite's center of mass), are constructed. A rigorous nonlinear analysis of their stability is carried out. The methods of KAM theory are used to describe two- and three-frequency conditionally periodic motions of a satellite, with frequencies of different orders in a small parameter. A number of general theoretical issues concerning the considered multiple parametric resonance in Hamiltonian systems with two degrees of freedom that are close to autonomous and periodic in time are discussed. Several qualitatively different variants of parametric resonance regions are constructed. It is shown that in the general case the nature of nonlinear resonant oscillations of the system is determined by the first approximation system in a small parameter.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.