Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Чистые фазы ферромагнитной модели Поттса с $q$ состояниями на дереве Кэли третьего порядка, с. 499-517Изучение фазового перехода является одной из центральных проблем статистической механики. Он происходит, когда для модели существуют по крайней мере две различные меры Гиббса. Известно, что для ферромагнитной модели Поттса с $q$ состояниями при достаточно низких температурах существуют не более $2^{q}-1$ трансляционно-инвариантных расщепленных мер Гиббса. Для непрерывных гамильтонианов меры Гиббса образуют непустое, выпуклое, компактное подмножество в пространстве всех вероятностных мер. Экстремальные меры, которые соответствуют крайним точкам этого множества, определяют чистые фазы. Мы изучаем экстремальность трансляционно-инвариантных расщепленных мер Гиббса для ферромагнитной модели Поттса с $q$ состояниями на дереве Кэли третьего порядка. Мы определяем области, в которых изучаемые трансляционно-инвариантные меры Гиббса для этой модели являются экстремальными или не являются экстремальными. Мы сводим описание мер Гиббса к решению нелинейного функционального уравнения, каждое решение которого соответствует одной предельной мере Гиббса.
Pure phases of the ferromagnetic Potts model with $q$ states on the Cayley tree of order three, pp. 499-517One of the main issues in statistical mechanics is the phase transition phenomenon. It happens when there are at least two distinct Gibbs measures in the model. It is known that the ferromagnetic Potts model with $q$ states possesses, at sufficiently low temperatures, at most $2^{q}-1$ translation-invariant splitting Gibbs measures. For continuous Hamiltonians, in the space of probability measures, the Gibbs measures form a non-empty, convex, compact set. Extremal measures, which corresponds to the extreme points of this set, determines pure phases. We study the extremality of the translation-invariant splitting Gibbs measures for the ferromagnetic $q$-state Potts model on the Cayley tree of order three. We define the regions where the translation-invariant Gibbs measures for this model are extreme or not. We reduce description of Gibbs measures to solving a non-linear functional equation, each solution of which corresponds to one Gibbs measure.
-
В работе исследован процесс хаотизации фазового портрета в ограниченной задаче о вращении тяжелого твердого тела с закрепленной точкой. Указаны два дополняющих друг друга механизма хаотизации - рост гомоклинической структуры и развитие каскадов бифуркаций удвоения периода. Отмечено адиабатическое поведение системы на нулевом уровне интеграла площадей при стремлении энергии к нулю. Найдены меандровые торы, связанные с нарушением свойства закручивания рассматриваемого отображения.
The paper deals with a transition to chaos in the phase-plane portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotisation have been indicated: 1) growth of the homoclinic structure and 2) development of cascades of period doubling bifurcations. On the zero level of the integral of areas, an adiabatic behavior of the system (as the energy tends to zero) has been noticed. Meander tori induced by the breakdown of the torsion property of the mapping have been found.
-
В рамках методов и уравнений механики многофазных сред построена математическая модель образования газового гидрата при закачке метана в пласт конечной протяженности, насыщенный метаном и льдом. Изучаемая проблема сведена к проблеме нахождения двух подвижных границ фазовых переходов. На основе метода ловли фронта в узел пространственной сетки получены численные решения задачи. Найдены распределения по пространственной координате температуры, давления и гидратонасыщенности, а также приведена эволюция во времени координат границ фазовых переходов. Анализ результатов вычислительных экспериментов показал, что образование газогидрата метана может происходить как на фронтальной границе, так и в протяженной зоне. Установлено, что часть газогидрата, образовавшегося в протяженной области, может в дальнейшем разлагаться на газ и воду. В этом случае протяженная область гидратообразования будет вырождаться во фронтальную поверхность.
система нелинейных дифференциальных уравнений, фильтрационное течение, нагнетание газа, газовые гидраты, пористая средаIn the framework of the methods and equations of the mechanics of multiphase media, a mathematical model is constructed for the formation of gas hydrate during the injection of methane into a reservoir of finite length saturated with methane and ice. The problem under study is reduced to the problem of finding two moving boundaries of phase transitions. Based on the method of catching the front in the node of the spatial grid, numerical solutions of the problem are obtained. The distributions along the spatial coordinate of temperature, pressure, and hydrate saturation are found, and the time evolution of the coordinates of the phase transition boundaries is given. Analysis of the results of computational experiments has shown that the formation of methane gas hydrate can occur both at the frontal boundary and in the extended zone. It has been established that part of the gas hydrate formed in the extended region can be further decomposed into gas and water. In this case, the extended region of hydrate formation will degenerate into the frontal surface.
-
Представлены результаты теоретического исследования процесса образования газогидрата диоксида серы при инжекции жидкой двуокиси серы в пласт, насыщенный водой и метаном. Построены автомодельные решения прямолинейно-параллельной задачи. Исследованы зависимости температуры и координаты фронта образования газогидрата диоксида серы от проницаемости пласта. Установлено, что с увеличением проницаемости пласта происходит рост температуры на поверхности фазового перехода. Вследствие этого при достаточно больших значениях проницаемости пласта температура на границе гидратообразования может превысить равновесную температуру разложения газогидрата диоксида серы, что будет соответствовать возникновению промежуточной области, насыщенной смесью воды, диоксида серы и его газогидрата, находящихся в состоянии термодинамического равновесия. Установлено, что при достаточно высоких значениях давления инжекции и проницаемости образование газогидрата диоксида серы будет происходить в протяженной области.
This paper presents the results of a theoretical study for the gas hydrate formation of sulfur dioxide by injecting liquid sulfur dioxide into a layer saturated with water and methane. Self-similar solutions of a straight-line parallel problem are constructed. The dependences of the temperature and the coordinates of the formation front of sulfur dioxide gas hydrate on the layer permeability are explored. It is established that, as the layer permeability increases, the temperature of the phase transition increases on the surface. As a result, at sufficiently large values of layer permeability, the temperature at the hydrate formation border may exceed the equilibrium decomposition temperature of sulfur dioxide gas hydrate, which will correspond to the appearance of an intermediate region saturated with a mixture of water, sulfur dioxide and its gas hydrate in a state of thermodynamic equilibrium. It is established that at sufficiently high values of injection pressure and permeability, the gas hydrate formation of sulfur dioxide will occur in the extended region.
-
В работе рассмотрена обобщенная модель образования новой фазы, объединяющая три основные стадии процесса роста при фазовом переходе первого рода. Получено численное решение кинетического уравнения Фоккера-Планка. Исследована зависимость решения от параметров системы, выявлены области применимости допущений, сделанных Зельдовичем, Лифшицем и Слезовым, и показано, что в зависимости от параметров системы можно получить как равновесное распределение, так и автомодельное распределение Лифшица-Слезова. При некоторых значениях параметров уравнение имеет осциллирующее решение.
The generalized model of formation of a new phase is considered. The basic stages of process of growth are gathered in a model at phase transition of the first sort. The numerical solution of the kinetic equation of Fokker-Planck is received. Dependence of the solution on parametres of system is investigated. Areas of applicability of assumptions made by Zeldovich, Lifshits and Slezov are revealed. Also it is shown, that depending on parametres of system it is possible to reserve both equilibrium distribution, and automodelling distribution of Lifshits-Slezov. At some values of parametres the equation has the oscillatory solution.
-
Распространение малых возмущений в пузырьковой жидкости, содержащей гидратообразующий газ, с. 130-138Решена задача об акустическом воздействии на жидкость с пузырьками гидратообразующего газа. В качестве газовой фазы брался фреон-12 и метан. Система находилась при равновесных условиях гидратообразования. Выписано дисперсионное уравнение для волнового числа, получены зависимости фазовой скорости и коэффициента затухания от дисперсности газожидкостной смеси и частоты возмущения в условиях гидратообразования и его отсутствия, определены параметры, влияющие на интенсивность перехода газа в гидратное состояние.
The problem of acoustic effect on the liquid with hydrate-generating gas bubbles is solved. The gas used were Freon-12 and Methane. The system was in the equilibrium hydrate-generating conditions. The dispersion equation for the wave number is obtained. The dependences of the phase velocity and the decrement of dumping on the dispersity of the gas-liquid mixture and on the frequency of disturbance under the hydrate-generating conditions and in the absence of hydrate-generating, were obtained. The parameters affecting the intensity of the gas transition into the hydrate state were defined.
-
Эффективность распараллеливания алгоритма решения уравнения PFC с использованием библиотеки PetIGA, с. 445-450В работе исследуется алгоритм решения уравнения кристаллического фазового поля (Phase Field Crystal - PFC) в гиперболической постановке. Уравнение описывает фазовые превращения из метастабильного или неустойчивого состояния на масштабе атомной плотности и является дифференциальным уравнением шестого порядка по пространству и второго порядка по времени. Алгоритм основан на методе изогеометрического анализа (IGA) и реализован посредством библиотеки PetIGA. Полученный программный код допускает распараллеливание расчетов, что существенно ускоряет процесс решения задачи. Дана оценка эффективности используемых инструментов при проведении расчетов на высокопроизводительных вычислительных кластерах. Проведен анализ эффективности исследуемого алгоритма при работе с гетерогенными вычислительными системами.
The effectiveness of parallelizing an algorithm of the PFC equation solution using PetIGA library, pp. 445-450The paper presents an algorithm for solving the equation of Phase Field Crystal (PFC) in a hyperbolic statement that allows to describe the phase transitions of metastable or unstable state at the nuclear density scale, described by a differential equation of the sixth order with respect to the space variable and the second order with respect to the time variable. The algorithm is based on the method of isogeometric analysis (IGA) and is implemented by PetIGA library. The resulting code allows parallel computations, which significantly speeds up the process of solving a problem. The effectiveness of used instruments during the calculations on high-performance computing clusters is evaluated. An analysis of the effectiveness of the current algorithm is carried out for heterogeneous computer systems.
-
Нуклеация и рост новой фазы на промежуточной стадии фазовых переходов в метастабильных растворах и расплавах, с. 283-296Найдено полное аналитическое решение интегро-дифференциальной модели, описывающей промежуточную стадию фазовых переходов в однокомпонентных расплавах и растворах без учета флуктуаций в скоростях роста кристаллов. В рамках этой модели получено точное аналитическое решение кинетического уравнения - найдена плотность функции распределения кристаллов по размерам. Выведено интегро-дифференциальное уравнение для степени метастабильности системы (для ее переохлаждения/пересыщения) при различных кинетических механизмах нуклеации зародышей. Построено полное аналитическое решение этого уравнения на основе метода седловой точки для вычисления интеграла лапласовского типа (метода перевала). Проанализировано четыре приближения аналитического решения и показана его сходимость. Исследованы кинетические механизмы Вебера-Вольмера-Френкеля-Зельдовича и Майера. Определены временные зависимости числа кристаллов и среднего размера кристаллов для переохлажденных расплавов.
Nucleation and growth of a new phase at the intermediate stage of phase transitions in metastable solutions and melts, pp. 283-296A complete analytical solution of an integro-differential model, which describes the intermediate stage of phase transitions in one-component melts and solutions without allowance for fluctuations in the crystal growth rates, is found. An exact analytical solution of the kinetic equation is determined within the framework of this model. The density of distribution function of crystals in sizes is found. An integro-differential equation for the system metastability level (for its supercooling/supersaturation) is derived for different kinetic mechanisms of particle nucleation. A complete analytical solution of this equation is constructed on the basis of saddle-point method for the Laplace-type integral (steepest descent method). Four approximations of the analytical solution are analyzed and its convergence is shown. The kinetic mechanisms of Weber-Volmer-Frenkel-Zel’dovich and Meirs are studied. A transient behavior of the number of particles and the mean crystal size is determined for supercooled melts.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.