Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В настоящей работе приведена модель анизотропного роста дендритных кристаллов из химически чистой и бинарной жидкости (раствора или расплава) с учетом вынужденной конвекции жидкой фазы. Представлены зависимости скорости роста и радиуса вершины дендрита от переохлаждения жидкости для случаев химически чистого материала и с учетом примесей. Дан сравнительный анализ влияния вынужденной конвекции на кинетику роста дендритов. Для оценки скорости роста и морфологии дендрита используется модель высокоскоростного роста дендритов, которая учитывает вклад конвективного потока и анизотропные свойства границы раздела кристалл-жидкость. В модели также используется гиперболическое уравнение диффузии для описания неравновесного захвата примеси поверхностью кристалла, которое возникает при быстром росте кристаллов.
The paper presents the model of anisotropic growth of dendritic crystallization of chemically pure and binary liquid (solution or melt) based on forced convection of the liquid phase. The dependencies of the growth rate and the radius of the top of a dendrite from under-cooling fluid in cases of a chemically pure material and alloys are presented. A comparative analysis of the influence of forced convection on the dendrite growth kinetics is carried out. Evaluation of growth rate and morphology of dendrite by high-speed crystal growth model was done. The contribution of convective flow and the anisotropic properties of the liquid-crystal boundary were taking into account. The model is also used hyperbolic diffusion equation to describe the non-equilibrium impurity capture by crystal surface, which occurs under the rapid crystals growth.
-
В статье исследуется дискретная модель нейрона, предложенная Рульковым. В детерминированном варианте эта система моделирует различные режимы нейронной активности, такие как покой, тонический и хаотический спайкинг. В присутствии случайных возмущений в системе может наблюдаться еще один важный режим - берстинг, характеризующийся перемежаемостью участков покоя и возбуждения. В работе исследуются вероятностные механизмы индуцированных шумом переходов от покоя к берстингу в зоне касательной бифуркации. Показано, что такие переходы могут сопровождаться трансформацией динамики системы из регулярной в хаотическую. Для анализа этих бифуркационных явлений используются техника функций стохастической чувствительности и метод доверительных интервалов.
модель Рулькова нейронной активности, случайные возмущения, функция стохастической чувствительности, касательная бифуркация, индуцированные шумом переходы, стохастические бифуркацииA discrete neuron model proposed by Rulkov is studied. In the deterministic version, this system simulates different modes of neural activity, such as quiescence, tonic and chaotic spiking. In the presence of random disturbances, another important mode of bursting characterized by the alternation of quiescence and excitement regimes can be observed. We study the probabilistic mechanisms of noise-induced transitions from quiescence to bursting in the zone of the tangent bifurcation. It is shown that such transitions are accompanied by a transformation of the system dynamics from regular to chaotic. For the analysis of these bifurcation phenomena, the stochastic sensitivity functions technique and method of confidence intervals are used.
-
В конечномерном нормированном пространстве рассматривается дискретная игровая задача фиксированной продолжительности. Терминальное множество определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. В данной работе построены оптимальные управления игроков. Проведено компьютерное моделирование игрового процесса. Рассмотрена модификация исходной задачи, в которой у первого игрока в неизвестный момент времени происходит изменение в динамике.
In a normed space of finite dimension a discrete game problem with fixed duration is considered. The terminal set is determined by the condition that the norm of the phase vector belongs to a segment with positive ends. In this paper, a set defined by this condition is called a ring. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is the opposite. In this paper, optimal controls of the players are constructed. Computer simulation of the game process is performed. A modification of the original problem, in which at an unknown time there is a change in the dynamics of the first player, is considered.
-
Рассматривается сопряженная задача теплообмена, которая возникает при расчете параметров инфракрасного нагревателя. Приводится постановка задачи для трехмерного турбулентного течения в трубе излучателя с учетом наличия лучистого теплообмена с отражателем и внешнего теплообмена с окружающей средой. Проведен расчет для поставленной задачи.
It is considered associate problem of heat-exchange, which we must solve at determination of parameters of а radiant heater. It is resulted a statement of a problem for three-dimensional turbulent current in pipe of emitter with provision for presence radiant heat-exchange with reflector and external heat-exchange with surrounding ambience. It is organized a calculation of delivered problems.
-
Изучается многомерный случай нелинейной системы реакции-диффузии, моделируемый системой двух уравнений параболического типа со степенными нелинейностями. Такого рода системы можно применять для моделирования процесса распространения в пространстве взаимодействующих распределенных формаций роботов двух типов. Такие уравнения описывают также процессы нелинейной диффузии в реагирующих двухкомпонентных сплошных средах. Предложен оригинальный вариант метода редукции, сводящий построение зависимости точного решения от пространственных переменных к решению уравнения Гельмгольца, а зависимости от времени — к решению линейной системы обыкновенных дифференциальных уравнений. Построен ряд примеров многопараметрических семейств точных решений, задаваемых элементарными функциями.
We study a multidimensional case of a nonlinear reaction-diffusion system modeled by a system of two parabolic equations with power nonlinearities. Such systems can be used to simulate the process of propagation in space of interacting distributed formations of robots of two types. Such equations also describe the processes of nonlinear diffusion in reacting two-component continuous media. An original version of the reduction method is proposed, which reduces the construction of the dependence of the exact solution on spatial variables to the solution of the Helmholtz equation, and the dependence on time to the solution of a linear system of ordinary differential equations. A number of examples of multiparameter families of exact solutions given by elementary functions are constructed.
-
Проведен численный анализ сопряженной естественной конвекции в пористой среде, насыщенной газом, окруженной твердыми стенками конечной толщины при наличии локального источника тепла. Краевая задач сформулирована в безразмерных переменных "функция тока - вектор завихренности - температура" и решена методом конечных разностей. Установлены масштабы влияние источника тепла, проницаемости внутреннего объема, фактора нестационарности и теплофизических характеристик ограждающих стенок на режимы течения и теплопереноса.
сопряженный теплоперенос, естественная конвекция, пористая среда, приближение Буссинеска, источник теплаConjugate natural convection in a porous medium saturated with a gas surrounded by the finite thickness solid walls at presence of a local heat source has been numerically analyzed. Boundary problem has been formulated in dimensionless variables such as "stream function - vorticity vector - temperature" and it has been solved by finite difference method. The effect levels of the heat source, the medium permeability, the transient factor and the heat conductivity of the solid walls on flow patterns and heat transfer modes have been determined.
-
Рассматривается трехмерная бидиффузионная конвекция в бесконечном по горизонтали слое несжимаемой жидкости в окрестности точек бифуркации Хопфа, взаимодействующая с полем горизонтальной завихренности. Методом многомасштабных разложений получено семейство амплитудных уравнений, описывающее вариации амплитуды конвективных ячеек, форма которых задаётся как суперпозиция конечного числа конвективных валиков с различными волновыми векторами.
Для численного моделирования полученных систем амплитудных уравнений были разработаны несколько численных схем, основанных на современных ETD (exponential time differencing) псевдоспектральных методах. Написаны пакеты программ для моделирования валиковой конвекции, а также конвекции с ячейками квадратного и гексагонального типов. Численное моделирование показало, что конвекция имеет вид вытянутых "облаков" или "нитей". Было замечено, что в системе достаточно быстро развивается состояние диффузионного хаоса, когда первоначальное симметричное состояние разрушается, и конвекция становится нерегулярной как по пространству, так и по времени. При этом в некоторых областях возникают пиковые всплески завихренности.
Three-dimensional double-diffusive convection in a horizontally infinite layer of an uncompressible liquid interacting with horizontal vorticity field is considered in the neighborhood of Hopf bifurcation points. A family of amplitude equations for variations of convective cells amplitude is derived by multiple-scaled method. Shape of the cells is given as a superposition of a finite number of convective rolls with different wave vectors.
For numerical simulation of the obtained systems of amplitude equations a few numerical schemes based on modern ETD (exponential time differencing) pseudospectral methods have been developed. The software packages have been written for simulation of roll-type convection and convection with square and hexagonal type cells. Numerical simulation has showed that the convection takes the form of elongated “clouds” or “filaments”. It has been noted that in the system quite rapidly a state of diffusive chaos is developed, where the initial symmetric state is destroyed and the convection becomes irregular both in space and time. At the same time in some areas there are bursts of vorticity.
-
Описан универсальный метод для моделирования равномерных распределений точек на гладких регулярных поверхностях в евклидовых пространствах различной размерности. Представлена интерпретация множества возможных значений параметров Родрига-Гамильтона, используемых при описании вращения твердого тела как множества точек трехмерной гиперсферы в четырехмерном евклидовом пространстве. Установлена связь между случайными равновероятными вращениями твердого тела и равномерным распределением точек на поверхности трехмерной гиперсферы в четырехмерном евклидовом пространстве.
равномерное распределение точек на гиперповерхностях, случайные точки на гиперсфере, кватернионы, случайные вращения
Uniform distribution of points on hypersurfaces: simulation of random equiprobable rotations, pp. 29-35The paper describes a universal method for simulation of uniform distributions of points on smooth regular surfaces in Euclidean spaces of various dimensions. The authors give an interpretation of a set of possible values of Rodrigues-Hamilton parameters used to describe a rigid rotation as a set of points of a three-dimensional hypersphere in four-dimensional Euclidean space. The relationship between random equiprobable rotations of a rigid body and a uniform distribution of points on the surface of a three-dimensional hypersphere in four-dimensional Euclidean space is established.
-
Рассматриваются постановка и тестовые решения задачи динамического взаимодействия твердых тел произвольной формы в рамках дискретно-элементного моделирования. При дискретизации используется описание тел произвольной формы, составленных из элементов-сфер, жестко связанных между собой. Агломераты строились на нескольких сетках с разной размерностью, что позволило оценить влияние параметров при построении агломератов сфер и гладкости получаемой поверхности. Представлена система уравнений движения агломерата сфер относительно глобальной системы координат, интегрирование которой выполняется на модифицированной схеме Верле. Силы взаимодействия между сферами определяются на основе контактной модели Герца-Миндлина с учетом вязкого демпфирования. Тестирование метода проводилось на задаче взаимодействия двух сфер. Вычислялись траектории движения сфер, представленные агломератом сферических частиц. Полученные результаты сравнивались со случаем движения и взаимодействия сфер в одночастичном приближении.
The paper deals with the statement of a problem of dynamic interaction of arbitrary solid bodies and its test solutions in the context of discrete element modeling. For discretization we use description of bodies with arbitrary shapes, composed of rigidly bound spheres. The clumps were built with different characteristics, which allowed to estimate their influence on the process of clump construction and the smoothness of obtained surface. A system of equations of motion relative to global axes for a clump of spheres is presented. The forces of interaction between the spheres are determined based on the Hertz-Mindlin contact model with due account for viscous damping. A problem of interaction of two spheres was chosen as a test case. Spheres' trajectories composed of clumps of spheres were calculated. The results were compared with the results for the case of motion and interaction of spheres in one-particle approximation.
-
Рассматривается задача консервативной интерполяции расчетных параметров между нестыкующимися поверхностными сетками. Разработан метод интерполяции на основе воксельного представления расчетной сетки с последующей оценкой площади пересечения каждого вокселя с ячейками сетки. Представление массы ячеек результирующей сетки осуществляется через линейную комбинацию известных масс ячеек базовой сетки. Метод позволяет рассматривать задачи интерполяции на криволинейных поверхностях, когда определение геометрического пересечения ячеек сеток является невозможным. Рассмотрены примеры интерполяции данных на основе различных функций на нестыкующихся сетках, описывающих плоские и криволинейные поверхности. Представлены результаты сравнения работы метода воксельной интерполяции с алгоритмом интерполяции на основе функций радиального базиса различных классов гладкости.
In this paper, we consider a problem of conservative interpolation data between non-matching surface meshes. We develop a new interpolation method based on voxel representation of the mesh followed by the evaluation of intersection area of each voxel with mesh cells. The mass of cells of the resulting mesh is represented through a linear combination of the known mass of parent cells. The method allows us to consider the problem of interpolation on curved surfaces when it is impossible to define the grid cells geometric intersection. The method was validated by numerical simulation of data interpolation based on various functions for the non-matching meshes describing plane and curved surfaces. The method of voxel interpolation was compared to the interpolation algorithm based on radial basis functions of different smoothness degree.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.