Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'small parameter':
Найдено статей: 37
  1. Исследуется воздействие аддитивных и параметрических шумов на аттракторы одномерной системы, задаваемой стохастическим дифференциальным уравнением Ито. Показано, что в отличие от аддитивных, параметрические возмущения приводят к сдвигу экстремумов функции плотности распределения. Для величины такого сдвига получено разложение по малому параметру интенсивности шума. Показано, что воздействие параметрического шума может изменить не только расположение, но и количество экстремумов плотности распределения. Подробный анализ соответствующих индуцированных шумами явлений проведен для трех динамических моделей. Сравнение погрешности приближений разного порядка для оценки сдвига экстремумов функции плотности представлено на примере линейной модели. Два сценария перехода между унимодальной и бимодальной формами стохастического аттрактора исследованы для систем с разными типами кубической нелинейности.

    The influence of additive and parametrical noise on attractors of the one-dimensional system governed by the stochastic differential Ito equation is investigated. It is shown that unlike additive, parametrical disturbances lead to the shift of extrema of probability density function. For the value of this shift, a decomposition on small parameter of noise intensity is obtained. It is shown that the influence of the parametrical noise can change not only the arrangement, but also the quantity of extrema of probability density function. The corresponding noise-induced phenomena are studied for three dynamical models in detail. An analysis of the error for the different order estimations of the shift of extrema for the probability density function is presented by the example of a linear model. Two scenarios of the transition between unimodal and bimodal forms of the stochastic attractor are investigated for systems with different types of cubic nonlinearity.

  2. Утверждается, что если в дополнение к условиям существования и единственности решения x(t, t0, μ) n-векторной задачи Коши dx/dt = f(t, x, μ) (tI, μM), x(t0) = x0 и непрерывной зависимости его от параметра μM потребовать равностепенную непрерывность семейства {f(t, x, ·)}(t,x), то x(t, t0, μ) равномерно непрерывно зависит от параметра μ на открытом множестве M. Для линейной n×n-матричной задачи Коши dX/dt = A(t, μ)X + (t, μ) (tI, μM), X(t0, μ) = X0(μ) аналогичное утверждение доказывается в предположении равномерной произвольной малости интегралов ∫I||A(t, μ1) − A(t, μ2)|| dt и ∫I||(t, μ1) − (t, μ2)|| dt при достаточной малости ||μ1μ2|| (μ1, μ2M).

    We prove that if, in addition to the assumptions that guarantee existence, uniqueness and continuous dependence on parameter μ ∈ M of solution x(t, t0,μ) of a n-dimensional Cauchy problem dx/dt = f(t, x, μ) (t ∈ I, μ ∈ M), x(t0) = x0 one requires that the family {f(t, x, ·)}(t,x) is equicontinuous, then the dependence of x(t, t0,μ) on parameter μ in an open M is uniformly continuous. Analogous result for a linear n × n-dimensional Cauchy problem dX/dt = A(t, μ)X + (t, μ) (t ∈ I, μ ∈ M), X(t0, μ) = X0(μ is valid under the assumption that the integrals I||A(tμ1) − A(t, μ2)||dt and I||(t, μ1) − (t, μ2)||dt are uniformly arbitrarily small, provided that ||μ1 − μ2||, μ1, μ2 ∈ M, is sufficiently small.

  3. Казарников А.В., Ревина С.В.
    Бифуркации в системе Рэлея с диффузией, с. 499-514

    Рассматривается система реакции-диффузии с кубической нелинейностью, которая является бесконечномерным аналогом классической системы Рэлея и частным случаем системы Фитцью-Нагумо. Предполагается, что пространственная переменная изменяется на отрезке, на концах которого заданы однородные краевые условия Неймана. Известно, что в данном случае в системе Рэлея с диффузией существует пространственно-однородный автоколебательный режим, совпадающий с предельным циклом классической системы Рэлея. В настоящей работе показано существование счетного множества критических значений управляющего параметра, при которых возникают пространственно-неоднородные автоколебательные и стационарные режимы. Данные режимы устойчивы относительно возмущений, принадлежащих некоторым бесконечномерным инвариантным подпространствам системы, но неустойчивы во всем фазовом пространстве. Это свойство объясняет, почему в результате численных экспериментов при некоторых значениях параметра различным начальным условиям соответствуют нулевое, периодическое по времени или стационарное решение. Асимптотика вторичных решений построена методом Ляпунова-Шмидта. Явно найдены первые члены разложения, проанализированы формулы для общего члена асимптотики. Показано, что на инвариантных подпространствах происходит мягкая потеря устойчивости нулевого равновесия. Эволюция вторичных режимов при увеличении значений надкритичности исследована численно. Установлено, что с ростом значений надкритичности вторичные автоколебательные режимы постепенно сменяются стационарными. Амплитуда стационарных решений растет по мере увеличения надкритичности, а профиль асимптотически стремится к профилю меандра.

    Kazarnikov A.V., Revina S.V.
    Bifurcations in a Rayleigh reaction-diffusion system, pp. 499-514

    We consider a reaction-diffusion system with a cubic nonlinear term, which is a special case of the Fitzhugh-Nagumo system and an infinite-dimensional version of the classical Rayleigh system. We assume that the spatial variable belongs to an interval, supplemented with Neumann boundary conditions. It is well-known that in that specific case there exists a spatially-homogeneous oscillatory regime, which coincides with the time-periodic solution of the classical Rayleigh system. We show that there exists a countable set of critical values of the control parameter, where each critical value corresponds to the branching of new spatially-inhomogeneous auto-oscillatory or stationary regimes. These regimes are stable with respect to small perturbations from some infinite-dimensional invariant subspaces of the system under study. This, in particular, explains the convergence of numerical solution to zero, periodic or stationary solution, which is observed for some specific initial conditions and control parameter values. We construct the asymptotics for branching solutions by using Lyapunov-Schmidt reduction. We find explicitly the first terms of asymptotic expansions and study the formulas for general terms of asymptotics. It is shown that a soft loss of stability occurs in invariant subspaces. We study numerically the evolution of secondary regimes due to the increase of control parameter values and observe that the secondary periodic solutions are transformed into stationary ones as the control parameter value increases. Next, the amplitude of stationary solutions continues to grow and the solution asymptotically converges to the square wave regime.

  4. Алгоритм понижения порядка обыкновенных дифференциальных уравнений (ОДУ) с использованием оператора инвариантного дифференцирования (ОИД) допускаемой алгебры Ли модифицирован для систем ОДУ с малым параметром, допускающих приближенные алгебры Ли операторов. Приведены инвариантные представления ОДУ второго порядка и систем двух ОДУ второго порядка. Введен ОИД приближенной алгебры Ли. Показано, что можно построить ОИД специального вида, позволяющий получать первый интеграл рассматриваемой системы. Приведены примеры использования алгоритма для случаев полного и неполного наследования алгебры Ли.

    The algorithm for the order reduction of ordinary differential equations (ODEs) by using the operator of invariant differentiation (OID) of admitted Lie algebra is modified for systems of ODEs with a small parameter that admit approximate Lie algebras of operators. Invariant representations of second-order ODEs and systems of two second-order ODEs are presented. The OID of approximate Lie algebra is introduced. It is shown that it is possible to construct a special type of OID, which is used for obtaining the first integral of the system considered. Examples of using the algorithm for cases of complete and incomplete inheritance of a Lie algebra are given.

  5. Изучается начально-краевая задача для многомерного псевдопараболического уравнения с переменными коэффициентами и граничными условиями третьего рода. Многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром. Показано, что при стремлении малого параметра к нулю решение полученной модифицированной задачи сходится к решению исходной задачи. Для приближенного решения полученной задачи строится локально-одномерная разностная схема А. А. Самарского. Методом энергетических неравенств получена априорная оценка, откуда следуют единственность, устойчивость и сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи. Для двумерной задачи построен алгоритм численного решения начально-краевой задачи для псевдопараболического уравнения с условиями третьего рода.

    We study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.

  6. В работе предложен подход к аппроксимации обыкновенных дифференциальных уравнений с производными дробного порядка (так называемых дробно-дифференциальных уравнений) дифференциальными уравнениями с производными целого порядка в предположении, что порядок дробного дифференцирования близок к целому числу. Для дробных производных Римана-Лиувилля и Капуто получены разложения по малому параметру, выделяемому из порядка дробного дифференцирования. При этом первый порядок разложения представляется через бесконечный ряд и зависит от производных всех целых порядков. Полученные разложения позволяют приблизить обыкновенные дифференциальные уравнения с производными дробных порядков этого типа обыкновенными дифференциальными уравнениями с малым параметром. Доказано, что для дробно-дифференциальных уравнений, принадлежащих определенному классу, соответствующие приближенные уравнения будут содержать только производные конечного целого порядка. Приближенные решения таких уравнений могут быть найдены с использованием известных методов возмущений. Предлагаемый подход иллюстрируется рядом примеров.

    An approach to approximation of ordinary fractional differential equations by integer-order differential equations is proposed. It is assumed that the order of fractional differentiation is close to integer. Perturbation expansions for the Riemann-Liouville and Caputo fractional derivatives are derived in terms of a suitable small parameter extracted from the order of fractional differentiation. The first-order term of these expansions is represented by series depending on integer-order derivatives of all integer orders. The expansions obtained permit one to approximate ordinary fractional differential equations, involving such types of fractional derivatives, by integer-order differential equations with a small parameter. It is proved that, for fractional differential equations belonging to a certain class, corresponding approximate equations contain only a finite number of integer-order derivatives. Approximate solutions to such equations can be obtained using well-known perturbation techniques. The proposed approach is illustrated by several examples.

  7. В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с непрерывным и дискретным временем и дискретной памятью. В рамках этого класса предлагается явное представление для основных составляющих представления общего решения — фундаментальной матрицы и оператора Коши. Полученные представления даются в терминах параметров рассматриваемой системы и открывают возможность эффективного исследования общих краевых задач и задач управления относительно заданной конечной системы линейных целевых функционалов. При исследовании упомянутых задач для систем за пределами изучаемого класса рассматриваемые в работе системы с дискретной памятью могут играть роль модельных или аппроксимирующих систем и оказаться полезными при изучении грубых свойств систем с последействием, сохраняющихся при малых возмущениях параметров.

    A class of linear functional differential systems with continuous and discrete times and discrete memory is considered. An explicit representation of the principal components to the general solution representation such as the fundamental matrix and the Cauchy operator is derived. The obtained representation is given in terms of the system parameters and opens a way towards efficient studying general linear boundary value problems and control problems with respect to a fixed collection of linear on-target functionals. In the study of the problems mentioned above outside the class under consideration, the systems with discrete memory can be employed as model or approximating ones. This can be useful as applied to systems with aftereffect under studying rough properties that hold under small perturbations of the parameters.

  8. Работа посвящена исследованию второй начально-краевой задачи для дифференциального уравнения третьего порядка псевдопараболического типа с переменными коэффициентами в многомерной области с произвольной границей. Рассматриваемое многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром и для полученного уравнения строится локально-одномерная разностная схема А.А. Самарского. С помощью принципа максимума получена априорная оценка решения локально-одномерной разностной схемы в равномерной метрике в норме $C$. Доказаны устойчивость и сходимость локально-одномерной разностной схемы.

    The work is devoted to the study of the second initial-boundary value problem for a general-form third-order differential equation of pseudoparabolic type with variable coefficients in a multidimensional domain with an arbitrary boundary. In this paper, a multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter, and a locally one-dimensional difference scheme by A.A. Samarskii is used. Using the maximum principle, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme in the uniform metric in the $C$ norm. The stability and convergence of the locally one-dimensional difference scheme are proved.

  9. В ограниченной по переменной $z$ области, имеющей слабо горизонтальную неоднородность, исследуется задача определения сверточного ядра $k(t,x)$, $t>0$, $x\in {\Bbb R}$, входящего в гиперболическое интегро-дифференциальное уравнение второго порядка. Предполагается, что это ядро слабо зависит от переменной $x$ и разлагается в степенной ряд по степеням малого параметра $\varepsilon$. Построен метод нахождения первых двух коэффициентов $k_{0}(t)$, $k_{1}(t)$ этого разложения по заданным первым двум моментам по переменной $x$ решения прямой задачи при $z=0$.

    The problem of determining the convolutional kernel $k(t,x)$, $t>0$, $x \in {\Bbb R}$, included in a hyperbolic integro-differential equation of the second order, is investigated in a domain bounded by a variable $z$ and having weakly horizontal heterogeneity. It is assumed that this kernel weakly depends on the variable $x$ and decomposes into a power series by degrees of a small parameter $\varepsilon$. A method for finding the first two coefficients $k_{0}(t)$, $k_{1}(t)$ of this expansion is constructed according to the given first two moments in the variable $x$ of the solution of the direct problem at $z=0$.

  10. Для исследования вещественных кубических отображений применён аппарат линейной сопряжённости. Предложена программа изучения циклов отображений, связанная с построением линий постоянства мультипликаторов на полуплоскостях существенных параметров. Изучены циклы небольших периодов: 1- и 2-циклы, а также менее подробно 3-циклы.

    The device of a linear conjugacy is applied to research of real cubic maps. The program of studying of map cycles is proposed. This program is connected with construction of multipliers constancy lines on the half-plane of material parameters. We study the cycles of small periods: 1 and 2-cycles, and also it is less detailed 3-cycles.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref