Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'spectral parameter':
Найдено статей: 9
  1. Построен характеристический многочлен спектральной задачи дифференциального уравнения первого порядка на отрезке со спектральным параметром в краевом условии с интегральным возмущением, которое является целой аналитической функцией от спектрального параметра. На основе формулы характеристического многочлена доказаны выводы об асимптотике спектра возмущенной спектральной задачи.

    This work is devoted to the construction of a characteristic polynomial of the spectral problem of a first-order differential equation on an interval with a spectral parameter in a boundary value condition with integral perturbation which is an entire analytic function of the spectral parameter. Based on the characteristic polynomial formula, conclusions about the asymptotics of the spectrum of the perturbed spectral problem are established.

  2. В настоящей работе мы изучаем спектральную задачу для дифференциального оператора второго порядка с инволюцией и с краевыми условиями типа Дирихле. Построена функция Грина изучаемой краевой задачи. Получены равномерные оценки функций Грина рассматриваемых краевых задач. Установлена равносходимость разложений произвольной функции из класса $L_{1}(-1,1)$ по собственным функциям двух дифференциальных операторов второго порядка с инволюцией с краевыми условиями типа Дирихле. Мы используем интегральный метод, основанный на функции Грина дифференциального оператора второго порядка с инволюцией и со спектральным параметром. Как следствие из доказанной теоремы о равносходимости разложений по собственным функциям, мы доказываем базисность в пространстве $L_{2}(-1,1)$ собственных функций спектральной задачи с непрерывным комплекснозначным коэффициентом $q(x).$

    In the present paper we study the spectral problem for the second-order differential operators with involution and boundary conditions of Dirichlet type. The Green's function of this boundary problem is constructed. Uniform estimates of the Green's functions for the boundary value problems considered are obtained. The equiconvergence of eigenfunction expansions of two second-order differential operators with involution and boundary conditions of Dirichlet type for any function in $L_{2}(-1,1)$ is established. We use an integral method based on the application of the Green's function of a differential operator with involution and spectral parameter. As a corollary from the equiconvergence theorem, it is proved that the eigenfunctions of the spectral problem form the basis in $L_{2}(-1,1)$ for any continuous complex-valued coefficient $q(x)$.

  3. Давлетов Д.Б., Давлетов О.Б., Давлетова Р.Р., Ершов А.А.
    О собственных элементах двумерной краевой задачи типа Стеклова для оператора Ламэ, с. 54-65

    В настоящей работе исследуется двумерная краевая задача типа Стеклова для оператора Ламэ в полуполосе, которая является предельной для сингулярно возмущенной краевой задачи в полуполосе с малым отверстием. Доказана теорема о существовании собственных элементов исследуемой краевой задачи. В частности, получены оценки для собственных значений, выраженные через постоянные Ламэ и параметр, определяющий ширину полуполосы, а также уточнена структура соответствующих собственных вектор-функций, определяющая их поведение при удалении от основания полуполосы. Более того, найдены явные выражения собственных значений предельной краевой задачи с точностью до решения системы алгебраических уравнений. Результаты, полученные в данной работе, позволят построить и строго обосновать асимптотическое разложение собственного значения сингулярно возмущенной краевой задачи в полуполосе с малым отверстием с точностью до степени малого параметра, характеризующего размер отверстия.

    Davletov D.B., Davletov O.B., Davletova R.R., Ershov A.A.
    On eigenelements of a two-dimensional Steklov-type boundary value problem for the Lamé operator, pp. 54-65

    In this paper, we study a two-dimensional Steklov-type boundary value problem for the Lamé operator in a half-strip, which is the limiting problem for a singularly perturbed boundary-value problem in a half-strip with a small hole. A theorem on the existence of eigenelements of the boundary value problem under study is proved. In particular, we obtain estimates for the eigenvalues expressed in terms of the Lamé constants and a parameter that determines the width of the half-strip, and refine the structure of the corresponding eigenfunctions, which determines their behavior as their argument move away from the base of the half-strip. Moreover, explicit expressions for the eigenvalues of the limiting boundary value problem are found up to the solution of a system of algebraic equations. The results obtained in this paper will make it possible to construct and rigorously justify an asymptotic expansion of the eigenvalue of a singularly perturbed boundary value problem in a half-strip with a small round hole in powers of a small parameter that determines the diameter of the hole.

  4. В предыдущей работе автора для двух прерывистых функций, заданных на отрезке, и специального параметра, названного дефектом, определено понятие квазиинтеграла. Если существует интеграл Римана–Стилтьеса, то для любого дефекта существует квазиинтеграл, и все они равны между собой. Интеграл Перрона–Стилтьеса, если он существует, совпадает с одним из квазиинтегралов, где дефект определен специальным образом.

    В настоящей работе доказана теорема существования и единственности решения квазиинтегрального уравнения с постоянной матрицей. Ядро системы - скалярная кусочно-непрерывная функция ограниченной вариации, компоненты уравнения - прерывистые функции, спектральный параметр - регулярное число. При определенных условиях квазиинтегральное уравнение можно интерпретировать как импульсную систему. Получено явное представление для решения однородного квазиинтегрального уравнения. Для абсолютно регулярного спектрального параметра определен аналог матрицы Коши, исследованы его свойства и получено явное представление для решения неоднородного квазиинтегрального уравнения в форме Коши. Аналогичные результаты получены для сопряженного и союзных уравнений.

    Обсуждается возможность восстановления аппроксимирующего дефекта квазиинтеграла, - дефекта, порождающего аппроксимируемые решения импульсной системы.

    In previous article we defined the concept of quasi-integral for two regulated functions on the interval and the special parameter, called ¾defect¿. If there is the Riemann–Stieltjes integral, then for any defect there is a quasi-integral, and they are all equal. The Perron–Stieltjes integral, if it exists, coincides with one of quasi-integrals where the defect is defined in a special way.

    In the present article the theorem of existence and uniqueness of solution for a quasi-integral equation with a constant matrix is proved. System’s kernel is a scalar piecewise continuous function of bounded variation. Components of the equation are regulated functions, spectral parameter is a regular number. Under certain conditions a quasi-integral equation can be interpreted as an impulse system. An explicit representation for the solution of a quasi-integral homogeneous equation is given. For an absolutely regular spectral parameter, the analogue of the Cauchy matrix is defined, its properties are investigated and the explicit representation for the solution of the nonhomogeneous quasi-integral equation in the Cauchy form is given. Similar results are obtained for the adjoint and associated equations.

    We discussed the possibility of restoration of the approximating defect of quasi-integral, which is defect generating approximated solutions of the impulse system.

  5. Последние 15 лет в физической литературе активно изучаются майорановские локализованные состояния (МЛС) и сопутствующие их возникновению явления, такие, как изменение кондактанса и эффект Джозефсона, что обусловлено вероятным применением МЛС при создании квантового компьютера. В статье изучены собственные функции одномерного оператора Боголюбова-де Жена с дельтаобразным потенциалом в нуле, описывающие локализованные состояния с энергией в лакуне спектра (сверхпроводящей щели). Найдены вероятности прохождения в задаче рассеяния для этого оператора, когда энергии близки к границе сверхпроводящей щели. Эти задачи исследовались как для единого на всей прямой сверхпроводящего порядка, определяемого вещественной константой $\Delta,$ так и для сверхпроводящего порядка, определяемого функцией $\Delta \theta (-x)+\Delta e^{i\varphi} \theta (x)$ для $\varphi=0,\pi$ (т.е. для нулевого сверхпроводящего тока и тока, близкого к критическому). Используемый гамильтониан можно рассматривать как простейшую модель перехода Джозефсона. Доказано, что в обоих случаях существуют два МЛС, но лишь при определенных значениях параметров, т.е. МЛС неустойчивы. При этом вероятность прохождения равна нулю в обоих случаях.

    For the last 15 years, Majorana bounded states (MBSs) and associated phenomena, such as variation of conductance and the Josephson effect, have been actively studied in the physical literature. Research in this direction is motivated by a highly probable use of MBSs in quantum computing. The article studies the eigenfunctions of the one-dimensional Bogolyubov-de Gennes operator with a delta-shaped potential at zero, describing localized states with energy in the spectral gap (superconducting gap). The transmission probabilities are found in the scattering problem for this operator, when the energies are close to the boundary of the superconducting gap. These problems are studied both for a superconducting order that is the only one on the whole straight line and is defined by the real constant $\Delta,$ and for a superconducting order defined by the function $\Delta\theta(-x)+\Delta e^{i\varphi}\theta(x)$ for $\varphi=0,\pi$ (i.e., for zero superconducting current and for current close to critical). The Hamiltonian used can be considered as the simplest model of the Josephson junction. It is proved that in both cases there are two MBSs, but with certain values of the parameters, i.e., MBSs are unstable. Moreover, the probability of passage is zero in both cases.

  6. В статье рассматривается оператор Штурма-Лиувилля с вещественным квадратично интегрируемым потенциалом. Граничные условия являются неразделенными. В одно из этих граничных условий входит квадратичная функция спектрального параметра. Изучены некоторые спектральные свойства оператора. Доказаны вещественность и отличность от нуля собственных значений и отсутствие присоединенных функций к собственным функциям, выведена асимптотическая формула для спектра оператора и получено представление характеристической функции в виде бесконечного произведения. Результаты статьи играют важную роль при решении обратных задач спектрального анализа для дифференциальных операторов.

    The article considers the Sturm-Liouville operator with a real quadratically integrable potential. Boundary conditions are non-separated. One of these boundary conditions includes the quadratic function of the spectral parameter. Some spectral properties of the operator are studied. It is proves that eigenvalues are real and non-zero and there are no associated functions to the eigenfunctions. An asymptotic formula for the spectrum of the operator is derived, and a representation of the characteristic function as an infinite product is obtained. The results of the paper play an important role in solving inverse problems of spectral analysis for differential operators.

  7. В настоящее время продолжают активно изучаться неэрмитовы топологические системы. В данной статье в строгом подходе изучена одна из ключевых неэрмитовых систем — модель Хатано–Нельсона $H$. Найдена функция Грина для этого гамильтониана. С помощью функции Грина аналитически получены собственные значения и собственные функции $H$ для конечных и полубесконечных цепей, а также для бесконечной цепи с локальным потенциалом. Обсуждается неэрмитов скин-эффект для упомянутых выше моделей. Также описана граница между локализованными и резонансными состояниями (при нулевой энергии — это граница между неэрмитовыми топологическими фазами).

    At present, non-Hermitian topological systems continue to be actively studed. In a rigorous approach, we study one of the key non-Hermitian systems — the Hatano–Nelson model $H$. We find the Green function for this Hamiltonian. Using the Green function, we analytically obtain the eigenvalues and eigenfunctions of $H$ for finite and semi-infinite chains, as well as for an infinite chain with a local potential. We discuss the non-Hermitian skin effect for the models mentioned above. We also describe the boundary between localized and resonant eigenfunctions (for the zero spectral parameter, this is the boundary between non-Hermitian topological phases).

  8. В статье рассмотрено параболо-гиперболическое уравнение с сингулярным коэффициентом и спектральным параметром в области, состоящей из характеристического треугольника и полуполосы. Сформулирована задача с нелокальным условием, связывающим значения искомой функции в точках двух граничных характеристик и линии изменения типа уравнения с помощью двух операторов, один из которых зависит от коэффициента сингулярности, а другой — от спектрального параметра. Поставленная задача исследована сведением ее к системе уравнений относительно следа искомой функции и еe производной по $x$ на линии изменения типа уравнения. Единственность решения доказана с использованием метода интегралов энергии, при этом использованы интегральные представления гамма-функции Эйлера и функции Бесселя первого рода. Существование решения задачи доказано методом интегральных уравнений, при этом поставленная задача эквивалентно сведена к интегральному уравнению Фредгольма второго рода, разрешимость которого следует из единственности решения задачи. Выявлены достаточные условия, которые обеспечивают однозначную разрешимость поставленной задачи.

    In the paper, a parabolic-hyperbolic equation with a singular coefficient and a spectral parameter in the domain which consists of a characteristic triangle and a half strip has been considered. A nonlocal problem connecting the values of the desired function at the two points of boundary characteristics and the line of equation type changing by means of two operators, the first of which depends on the coefficient of the singularity and the second one - on the spectral parameters, is formulated. The considered problem is investigated by reducing it to the system of equations in the trace of the desired function and its derivative with respect to $x$ on the line of equation type changing. The uniqueness of the solution is proved by the method of energy integrals, for this we use integral representations of Euler gamma-function and Bessel function of the first kind. The existence of the solution is proved by the method of integral equations, for this we equivalently reduce the considered problem to the Fredholm integral equation of the second kind which solvability follows from the uniqueness of the problem solution. Sufficient conditions for unique solvability of the considered problem are found.

  9. Основной целью данной работы является построение новых высокоточных рядов вращения абсолютно твердой Земли, которые являются динамически согласованными с эфемеридой DE406/LE406. Динамика вращательного движения абсолютно твердой Земли изучается численно с помощью параметров Родрига-Гамильтона на 2000-летнем и 6000-летнем интервалах времени. Все вычисления в данном исследовании производятся с четверной точностью. Орбитальное движение возмущающих небесных тел определяется эфемеридой DE406/LE406. Результаты численного решения рассматриваемой проблемы сравниваются с полуаналитическими решениями задачи о вращении абсолютно твердой Земли SMART97 и S9000 соответственно относительно неподвижной эклиптики эпохи J2000. Начальные условия для численного интегрирования берутся из соответствующих полуаналитических решений. Исследование невязок сравнения между высокоточными численными решениями задачи о вращении абсолютно твердой Земли и полуаналитическими решениями этой задачи  производятся методами наименьших квадратов и спектрального анализа. Задача решалась с учетом наиболее существенных из релятивистских возмущений во вращательном движении Земли - геодезических возмущений. В результате построены новые долгосрочные решения вращения абсолютно твeрдой Земли RERS2012 (Rigid Earth Rotation Series 2012), динамически согласованные с эфемеридой DE406/LE406 на 2000-летнем и 6000-летнем интервалах времени.

    The main purpose of this research is the construction of the new high-precision rigid Earth rotation series, dynamically adequate to the JPL DE406/LE406 ephemeris. The dynamics of the rotational motion of the rigid Earth is studied numerically by using Rodrigues-Hamilton parameters over 2000 and 6000 years. The numerical solution of the rigid Earth rotation is implemented with the quadruple precision of the calculations. The orbital motions of the disturbing celestial bodies are defined by the DE406/LE406 ephemeris. The results of the numerical solutions of the problem are compared with the semi--analytical solutions of the rigid Earth rotation SMART97 and S9000, respectively, with respect to the fixed ecliptic of epoch J2000. The initial conditions of the numerical integration are taken from the corresponding semi-analytical solutions of the rigid Earth rotation. The investigation of the discrepancies between high-precision numerical solutions and semi-analytical solutions of the rigid Earth rotation problem is carried out by the least squares and spectral analysis methods. The problem was solved taking into account most significant of the relativistic perturbation in the rotational motion of the Earth - geodetic perturbations. As a result, the Rigid Earth Rotation Series (RERS2012) is constructed, which is dynamically adequate to the DE406/LE406 ephemeris over 2000 and 6000 years.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref