Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается билинейная управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянный вектор управления таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Критерий выражен в терминах ранговых условий для матриц специального вида. Показана взаимосвязь этих ранговых условий со свойством согласованности усеченной системы без запаздывания. Получены следствия о стабилизации билинейной системы с запаздыванием. Результаты обобщают полученные ранее результаты о назначении спектра для линейных систем со статической обратной связью по выходу с запаздыванием и для билинейных систем без запаздывания. Полученные результаты переносятся на билинейные системы с запаздыванием с дискретным временем. Рассмотрен иллюстрирующий пример.
We consider a bilinear control system defined by a linear time-invariant system of differential equations with delay in the state variable. We study an arbitrary finite spectrum assignment problem by stationary control. One needs to construct constant control vector such that the characteristic quasi-polynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of this finite spectrum assignment problem. This criterion is expressed in terms of rank conditions for matrices of the special form. Interconnection of these rank conditions with the property of consistency for truncated system without delay is shown. Corollaries on stabilization of a bilinear system with delay are obtained. The results extend the previously obtained results on spectrum assignment for linear systems with static output feedback with delay and for bilinear systems without delay. The results obtained are transferred to discrete-time bilinear systems with delay. An illustrative example is considered.
-
О равномерной глобальной достижимости двумерных линейных систем с локально интегрируемыми коэффициентами, с. 178-192Рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами $$ \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad\qquad (1)$$ Управление в системе $(1)$ строится по принципу линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t),$ $t\geqslant 0.$ Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad\qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы $(2)$ означает существование такой матричной функции $U(t),$ $t\geqslant 0,$ которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb N,$ $\det H_k>0.$ Представленная задача решается в предположении равномерной полной управляемости системы $(1),$ соответствующей замкнутой системе $(2),$ т.е. при условии существования таких $\sigma>0$ и $\gamma>0,$ что при любых начальном моменте времени $t_0\geqslant 0$ и начальном состоянии $x(t_0)=x_0\in \mathbb{R}^n$ системы (1) на отрезке $[t_0,t_0+\sigma]$ найдется измеримое и ограниченное векторное управление $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ переводящее вектор начального состояния этой системы в ноль на данном отрезке. Доказано, что в двумерном случае, т.е. при $n=2,$ свойство равномерной полной управляемости системы $(1)$ является достаточным условием равномерной глобальной достижимости соответствующей системы $(2).$
On uniform global attainability of two-dimensional linear systems with locally integrable coefficients, pp. 178-192We consider a linear time-varying control system with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \qquad\qquad (1) $$ We construct control of the system $(1)$ as a linear feedback $u=U(t)x$ with measurable and bounded function $U(t),$ $t\geqslant 0.$ For the closed-loop system $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \qquad \qquad (2)$$ we study a question about the conditions for its uniform global attainability. The last property of the system $(2)$ means existence of a matrix $U(t),$ $t\geqslant 0,$ that ensure equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system $(2)$ with fixed $T>0$ and arbitrary $k\in\mathbb N,$ $\det H_k>0.$ The problem is solved under the assumption of uniform complete controllability of the system $(1),$ corresponding to the closed-loop system $(2),$ i.e. assuming the existence of such $\sigma>0$ and $\gamma>0,$ that for any initial time $t_0\geqslant 0$ and initial condition $x(t_0)=x_0\in \mathbb{R}^n$ of the system $(1)$ on the segment $[t_0,t_0+\sigma]$ there exists a measurable and bounded vector control $u=u(t),$ $\|u(t)\|\leqslant\gamma\|x_0\|,$ $t\in[t_0,t_0+\sigma],$ that transforms a vector of the initial state of the system into zero on that segment. It is proved that in two-dimensional case, i.e. when $n=2,$ the property of uniform complete controllability of the system $(1)$ is a sufficient condition of uniform global attainability of the corresponding system $(2).$
-
Рассматривается билинейная управляемая система, заданная линейной стационарной дифференциальной системой с несколькими несоизмеримыми запаздываниями в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянные векторы управления таким образом, чтобы характеристическая функция замкнутой системы равнялась многочлену с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Показана взаимосвязь условий критерия со свойством согласованности усеченной системы без запаздываний. Получены следствия о стабилизации билинейных систем с запаздываниями. Аналогичные результаты получены для билинейных системы с несколькими запаздываниями с дискретным временем. Рассмотрен иллюстрирующий пример.
A bilinear control system defined by a linear stationary differential system with several non-commensurate delays in the state variable is considered. A problem of finite spectrum assignment by constant control is studied. One needs to construct constant control vectors such that the characteristic function of the closed-loop system is equal to a polynomial with arbitrary given coefficients. Conditions on coefficients of the system are obtained under which the criterion was found for solvability of the finite spectrum assignment problem. Interconnection of the criterion conditions with the property of consistency for the truncated system without delays is shown. Corollaries on stabilization of bilinear systems with delays are obtained. The similar results are obtained for discrete-time bilinear systems with several delays. An illustrative example is considered.
-
Предложен метод расчета порога протекания xc бесконечной решетки в d-мерном пространстве на основе среднего значения величины xcL решеток малых размеров L. Условие применимости метода ограничило круг рассматриваемых 2d и 3d решеток в задаче узлов до квадратной и алмазной. Величины xcL для этих решеток рассчитывались на основе вектора начального состояния решетки и матрицы смежности графа, соответствующего решетке с долей узлов x=1. Вычислены пороги протекания квадратной решетки xc=0,592744 и решетки алмаза xc=0,430308.
A method of calculating the percolation threshold xc in d-dimensional space is proposed based on the average value of the quantity xcL of small-sized lattices L. The condition for applicability of the method has limited the range of 2d and 3d lattices being considered in the problem of knots to square and diamond lattices. The values of xcL for these lattices have calculated in terms of the vector of the initial state of the lattice and the adjacency matrix of the graph corresponding to the lattice with the fraction of knots x=1. Percolation thresholds for the square lattice xc=0,592744 and the diamond lattice xc=0,430308 have been calculated.
-
Рассматривается трехмерная бидиффузионная конвекция в бесконечном по горизонтали слое несжимаемой жидкости в окрестности точек бифуркации Хопфа, взаимодействующая с полем горизонтальной завихренности. Методом многомасштабных разложений получено семейство амплитудных уравнений, описывающее вариации амплитуды конвективных ячеек, форма которых задаётся как суперпозиция конечного числа конвективных валиков с различными волновыми векторами.
Для численного моделирования полученных систем амплитудных уравнений были разработаны несколько численных схем, основанных на современных ETD (exponential time differencing) псевдоспектральных методах. Написаны пакеты программ для моделирования валиковой конвекции, а также конвекции с ячейками квадратного и гексагонального типов. Численное моделирование показало, что конвекция имеет вид вытянутых "облаков" или "нитей". Было замечено, что в системе достаточно быстро развивается состояние диффузионного хаоса, когда первоначальное симметричное состояние разрушается, и конвекция становится нерегулярной как по пространству, так и по времени. При этом в некоторых областях возникают пиковые всплески завихренности.
Three-dimensional double-diffusive convection in a horizontally infinite layer of an uncompressible liquid interacting with horizontal vorticity field is considered in the neighborhood of Hopf bifurcation points. A family of amplitude equations for variations of convective cells amplitude is derived by multiple-scaled method. Shape of the cells is given as a superposition of a finite number of convective rolls with different wave vectors.
For numerical simulation of the obtained systems of amplitude equations a few numerical schemes based on modern ETD (exponential time differencing) pseudospectral methods have been developed. The software packages have been written for simulation of roll-type convection and convection with square and hexagonal type cells. Numerical simulation has showed that the convection takes the form of elongated “clouds” or “filaments”. It has been noted that in the system quite rapidly a state of diffusive chaos is developed, where the initial symmetric state is destroyed and the convection becomes irregular both in space and time. At the same time in some areas there are bursts of vorticity.
-
Рассматривается линейная система управления, заданная стационарным дифференциальным уравнением с одним сосредоточенным и одним распределенным запаздыванием. В системе на вход подается линейная комбинация из $m$ сигналов и их производных до порядка $n-p$ включительно, а выход представляет собой $k$-мерный вектор линейных комбинаций состояния и его производных до порядка не более $p-1$. Для этой системы исследуется задача управления спектром с помощью линейной статической обратной связи по выходу с сосредоточенным и распределенным запаздываниями. Получены необходимые и достаточные условия разрешимости задачи произвольного размещения спектра посредством статической обратной связи по выходу, имеющей тот же вид, что и система. Получены следствия о стабилизации системы.
линейное дифференциальное уравнение, сосредоточенное запаздывание, распределенное запаздывание, управление спектром, стабилизация, статическая обратная связь по выходуA linear control system defined by a stationary differential equation with one lumped and one distributed delay is considered. In the system, the input is a linear combination of $m$ variables and their derivatives of order not more than $n-p$ and the output is a $k$-dimensional vector of linear combinations of the state and its derivatives of order not more than $p-1$. For this system, a spectrum assignment problem by linear static output feedback with delays is studied. Necessary and sufficient conditions are obtained for solvability of the arbitrary spectrum assignment problem by static output feedback controller of the same type as the system. Corollaries on stabilization of the system are obtained.
-
Метод малого параметра Пуанкаре активно применяется в небесной механике, а также в теории дифференциальных уравнений и в ее важном разделе — оптимальном управлении. В предлагаемой статье данный метод используется для построения явного вида равновесия по Нэшу и Бержу в дифференциальной позиционной игре с малым влиянием одного из игроков на скорость изменения фазового вектора.
метод малого параметра, дифференциальная линейно-квадратичная бескоалиционная игра, равновесие по Нэшу, равновесие по БержуThe Poincaré small parameter method is actively used in celestial mechanics, as well as in the theory of differential equations and in its important section called optimal control. In this paper, the mentioned method is used to construct an explicit form of Nash and Berge equilibrium in a differential positional game with a small influence of one of the players on the rate of change of the state vector.
-
Рассматривается линейная нестационарная управляемая система $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R}, \qquad \qquad (1)$$ с кусочно-непрерывными и ограниченными $\omega$-периодическими матрицами коэффициентов $A(\cdot)$ и $B(\cdot)$. Управление в системе (1) строится по принципу линейной обратной связи $u=U(t)x$ с кусочно-непрерывной и ограниченной матричной функцией $U(t)$, $t\in \mathbb{R}$. Для замкнутой системы $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \qquad \qquad (2)$$ исследуется вопрос об условиях ее равномерной глобальной достижимости. Наличие последнего свойства у системы (2) означает существование такой матричной функции $U(t)$, $t\in \mathbb{R}$, которая обеспечивает для матрицы Коши $X_U(t,s)$ этой системы выполнение равенств $X_U((k+1)T,kT)=H_k$ при фиксированном $T>0$ и произвольных $k\in\mathbb{Z}$, $\det H_k>0$. Представленная задача решается в предположении равномерной полной управляемости (в смысле Калмана) системы (1), соответствующей замкнутой системе (2), т.е. при условии существования для системы (1) таких чисел $\sigma>0$ и $\alpha_i>0$, $i=\overline{1,4}$, что при всяких числе $t_0\in\mathbb{R}$ и векторе $\xi\in \mathbb{R}^n$ справедливы неравенства $$\alpha_1\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$ $$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$ в которых $X(t,s)$ - матрица Коши линейной системы (1) при $u(t)\equiv0.$ Доказано, что свойство равномерной полной управляемости (в смысле Калмана) периодической системы (1) является необходимым и достаточным условием равномерной глобальной достижимости соответствующей системы (2).
линейная управляемая система с периодическими коэффициентами, равномерная полная управляемость, равномерная глобальная достижимостьWe consider a linear time-varying control system $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\in \mathbb{R}, \qquad \qquad (1)$$ with piecewise continuous and bounded $\omega$-periodic coefficient matrices $A(\cdot)$ and $B(\cdot).$ We construct control of the system (1) as a linear feedback $u=U(t)x$ with piecewise continuous and bounded matrix function $U(t)$, $t\in \mathbb{R}$. For the closed-loop system $$\dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\in \mathbb{R}, \qquad \qquad (2)$$ the conditions of its uniform global attainability are studied. The latest property of the system (2) means existence of matrix $U(t)$, $t\in \mathbb{R}$, ensuring equalities $X_U((k+1)T,kT)=H_k$ for the state-transition matrix $X_U(t,s)$ of the system (2) with fixed $T>0$ and arbitrary $k\in\mathbb{Z}$, $\det H_k>0$. The problem is solved under the assumption of uniform complete controllability (by Kalman) of the system (1), corresponding to the closed-loop system (2), i.e. assuming the existence of such numbers $\sigma>0$ and $\alpha_i>0$, $i=\overline{1,4}$, that for any number $t_0\in\mathbb{R}$ and vector $\xi\in \mathbb{R}^n$ the following inequalities hold: $$\alpha_1\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0,s)B(s)B^*(s)X^*(t_0,s)\,ds\,\xi\leqslant\alpha_2\|\xi\|^2,$$ $$\alpha_3\|\xi\|^2\leqslant\xi^*\int\nolimits_{t_0}^{t_0+\sigma}X(t_0+\sigma,s)B(s)B^*(s)X^*(t_0+\sigma,s)\,ds\,\xi\leqslant\alpha_4 \|\xi\|^2,$$ where $X(t,s)$ is the state-transition matrix of linear system (1) with $u(t)\equiv0.$ It is proved that the property of uniform complete controllability (by Kalman) of the periodic system (1) is a necessary and sufficient condition of uniform global attainability of the corresponding system (2).
-
Стохастические дифференциальные системы со случайными запаздываниями в форме дискретных цепей Маркова, с. 501-516В работе дан обзор проблем, приводящих к необходимости анализа моделей линейных и нелинейных динамических систем в форме стохастических дифференциальных уравнений со случайными запаздываниями различного типа, а также представлены некоторые известные методы решения этих задач. Далее в статье предлагаются новые подходы к приближенному анализу линейных и нелинейных стохастических динамических систем, изменения запаздываний которых описываются дискретной марковской цепью с непрерывным временем. Используемые подходы базируются на сочетании классического метода шагов, расширения пространства состояния стохастической системы и метода статистического моделирования (Монте-Карло). В рассматриваемом случае такой подход позволил упростить задачу и привести исходные уравнения к системам стохастических дифференциальных уравнений без запаздывания. Более того, для линейных систем получена замкнутая последовательность систем обыкновенных дифференциальных уравнений увеличивающейся размерности относительно функций условных математических ожиданий и ковариаций вектора состояния. Изложенная схема демонстрируется на примере стохастической системы второго порядка, изменения запаздывания которой описываются марковской цепью с пятью состояниями. Все расчеты и построение графиков проводились в среде математического пакета Mathematica с помощью программы, написанной на входном языке этого пакета.
стохастическая динамическая система, случайное запаздывание, моделирование, вектор состояния, переходный процесс
Stochastic differential equations with random delays in the form of discrete Markov chains, pp. 501-516The paper provides an overview of the problems that lead to a necessity for analyzing models of linear and nonlinear dynamic systems in the form of stochastic differential equations with random delays of various types as well as some well-known methods for solving these problems. In addition, the author proposes some new approaches to the approximate analysis of linear and nonlinear stochastic dynamic systems. Changes of delays in these systems are governed by discrete Markov chains with continuous time. The proposed techniques for the analysis of systems are based on a combination of the classical steps method, an extension of the state space of a stochastic system under examination, and the method of statistical modeling (Monte Carlo). In this case the techniques allow to simplify the task and to transfer the source equations to systems of stochastic differential equations without delay. Moreover, for the case of linear systems the author has obtained a closed sequence of systems with increasing dimensions of ordinary differential equations satisfied by the functions of conditional expectations and covariances for the state vector. The above scheme is demonstrated by the example of a second-order stochastic system. Changes of the delay in this system are controlled by the Markov chain with five states. All calculations and graphics were performed in the environment of the mathematical package Mathematica by means of a program written in the source language of the package.
-
Рассматривается задача об оптимальном управлении по быстродействию. Обсуждаются достаточные условия локальной оптимальности, связанные с необходимыми условиями принципа максимума Понтрягина при условии полной управляемости системы в вариациях. Задача обсуждается для системы, описываемой векторным дифференциальным уравнением, обыкновенным или с последействием. В случае конфликтного управления обсуждается задача оптимального управления по критерию минимакса-максимина времени выхода системы в заданное состояние. Рассматривается модельный пример и обсуждается соответствующий вычислительный эксперимент.
оптимальное управление, локальная оптимальность по быстродействию, конфликтное управление, минимакс, максимин времени до встречи, интегро-дифференциальное уравнение, обобщенное решение, предельная система в вариациях, фундаментальная матрица системы в вар
One problem of the optimal control of a system with aftereffect in conditions of conflict, pp. 65-70In the paper a time-optimal control problem is considered. Sufficient conditions for local optimality are obtained which are linked with necessary conditions of Pontryagin's maximum principle under assumption of total controllability of a system in variations. The problem is studied for a system described by a vector differential equation either ordinary or with aftereffect. In the case of conflict control, the optimal control problem is discussed for a criterion of the minmax-maxmin time when the system attains a given state. The model example is given and the corresponding numerical experiment is discussed.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.