Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'time delay':
Найдено статей: 17
  1. Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=Q_0 y(t)+Q_1 y(t-h)$. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты $Q_0$, $Q_1$ обратной связи таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Полученные результаты распространяются на системы с несколькими запаздываниями. Получены следствия о стабилизации системы $(1)$, а также системы вида $(1)$ с несколькими запаздываниями, посредством линейной статической обратной связи по выходу с запаздыванием.

    We consider a control system defined by a linear time-invariant system of differential equations with delay $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ We construct the controller for the system $(1)$ as linear output feedback $u(t)=Q_0 y(t)+Q_1 y(t-h)$. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain matrices $Q_0$, $Q_1$ such that the characteristic quasipolynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system $(1)$ under which the criterion was found for solvability of the finite spectrum assignment problem. The obtained result extends to systems with several delays. Corollaries on stabilization by linear static output feedback with delay are obtained for system $(1)$ as well as for systems of type $(1)$ with several delays.

  2. Рассматривается билинейная управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянный вектор управления таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Критерий выражен в терминах ранговых условий для матриц специального вида. Показана взаимосвязь этих ранговых условий со свойством согласованности усеченной системы без запаздывания. Получены следствия о стабилизации билинейной системы с запаздыванием. Результаты обобщают полученные ранее результаты о назначении спектра для линейных систем со статической обратной связью по выходу с запаздыванием и для билинейных систем без запаздывания. Полученные результаты переносятся на билинейные системы с запаздыванием с дискретным временем. Рассмотрен иллюстрирующий пример.

    We consider a bilinear control system defined by a linear time-invariant system of differential equations with delay in the state variable. We study an arbitrary finite spectrum assignment problem by stationary control. One needs to construct constant control vector such that the characteristic quasi-polynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of this finite spectrum assignment problem. This criterion is expressed in terms of rank conditions for matrices of the special form. Interconnection of these rank conditions with the property of consistency for truncated system without delay is shown. Corollaries on stabilization of a bilinear system with delay are obtained. The results extend the previously obtained results on spectrum assignment for linear systems with static output feedback with delay and for bilinear systems without delay. The results obtained are transferred to discrete-time bilinear systems with delay. An illustrative example is considered.

  3. Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с сосредоточенными и распределенными запаздываниями по состоянию. Управление в системе строится в виде линейной статической обратной связи по выходу с сосредоточенными и распределенными запаздываниями в тех же узлах. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты обратной связи таким образом, чтобы характеристическая функция замкнутой системы обращалась в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Получены следствия о стабилизации системы с несколькими запаздываниями посредством линейной статической обратной связи по выходу с запаздываниями.

    We consider a control system defined by a linear time-invariant system of differential equations with lumped and distributed delays in the state variable. We construct a controller for the system as linear static output feedback with lumped and distributed delays in the same nodes. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain coefficients such that the characteristic function of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of the finite spectrum assignment problem. Corollaries on stabilization by linear static output feedback with several delays are obtained for the closed-loop system.

  4. Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с соизмеримыми запаздываниями в состоянии $$ \dot x(t)=Ax(t)+\sum\limits_{j=1}^sA_jx(t-jh)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad \qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=\sum\limits_{\rho =0}^{\theta}Q_\rho y(t-\rho h)$. Исследуется задача назначения произвольного спектра для замкнутой системы: требуется определить число $\theta$ и построить матрицы $Q_{\rho}$, $\rho=0,\ldots,\theta$, обратной связи таким образом, чтобы характеристическая функция замкнутой системы с соизмеримыми запаздываниями обращалась в квазиполином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения произвольного спектра. Получены следствия о стабилизации системы $(1)$ посредством линейной статической обратной связи по выходу с соизмеримыми запаздываниями. Рассмотрен иллюстрирующий пример.

    We consider a control system defined by a linear time-invariant system of differential equations with commensurate delays in state $$ \dot x(t)=Ax(t)+\sum\limits_{j=1}^sA_jx(t-jh)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad \qquad(1) $$ We construct a controller for the system $(1)$ as linear static output feedback $u(t)=\sum\limits_{\rho =0}^{\theta}Q_\rho y(t-\rho h)$. We study an arbitrary spectrum assignment problem for the closed-loop system. One needs to define a $\theta$ and to construct gain matrices $Q_{\rho}$, $\rho=0,\ldots,\theta$, such that the characteristic function of the closed-loop system with commensurate delays becomes a quasipolynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system $(1)$ under which the criterion is found for solvability of the problem of arbitrary spectrum assignment. Corollaries on stabilization by linear static output feedback with commensurate delays are obtained for the system $(1)$. An illustrative example is considered.

  5. Рассматривается билинейная управляемая система, заданная линейной стационарной дифференциальной системой с несколькими несоизмеримыми запаздываниями в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянные векторы управления таким образом, чтобы характеристическая функция замкнутой системы равнялась многочлену с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Показана взаимосвязь условий критерия со свойством согласованности усеченной системы без запаздываний. Получены следствия о стабилизации билинейных систем с запаздываниями. Аналогичные результаты получены для билинейных системы с несколькими запаздываниями с дискретным временем. Рассмотрен иллюстрирующий пример.

    Zaitsev V.A., Kim I.G., Khartovskii V.E.
    Finite spectrum assignment problem for bilinear systems with several delays, pp. 319-331

    A bilinear control system defined by a linear stationary differential system with several non-commensurate delays in the state variable is considered. A problem of finite spectrum assignment by constant control is studied. One needs to construct constant control vectors such that the characteristic function of the closed-loop system is equal to a polynomial with arbitrary given coefficients. Conditions on coefficients of the system are obtained under which the criterion was found for solvability of the finite spectrum assignment problem. Interconnection of the criterion conditions with the property of consistency for the truncated system without delays is shown. Corollaries on stabilization of bilinear systems with delays are obtained. The similar results are obtained for discrete-time bilinear systems with several delays. An illustrative example is considered.

  6. В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с непрерывным и дискретным временем и дискретной памятью. В рамках этого класса предлагается явное представление для основных составляющих представления общего решения — фундаментальной матрицы и оператора Коши. Полученные представления даются в терминах параметров рассматриваемой системы и открывают возможность эффективного исследования общих краевых задач и задач управления относительно заданной конечной системы линейных целевых функционалов. При исследовании упомянутых задач для систем за пределами изучаемого класса рассматриваемые в работе системы с дискретной памятью могут играть роль модельных или аппроксимирующих систем и оказаться полезными при изучении грубых свойств систем с последействием, сохраняющихся при малых возмущениях параметров.

    A class of linear functional differential systems with continuous and discrete times and discrete memory is considered. An explicit representation of the principal components to the general solution representation such as the fundamental matrix and the Cauchy operator is derived. The obtained representation is given in terms of the system parameters and opens a way towards efficient studying general linear boundary value problems and control problems with respect to a fixed collection of linear on-target functionals. In the study of the problems mentioned above outside the class under consideration, the systems with discrete memory can be employed as model or approximating ones. This can be useful as applied to systems with aftereffect under studying rough properties that hold under small perturbations of the parameters.

  7. В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с последействием, непрерывным и дискретным временем и импульсными воздействиями (импульсные гибридные ФДУ). В центре внимания находятся конструкции операторов, позволяющих дать полное описание всех траекторий гибридной системы, и в терминах этих операторов формулировать условия разрешимости задач управления с выбором управлений из различных классов, давать описание (оценки) множеств достижимости при наличии ограничений на управление, а также получать условия разрешимости общих линейных краевых задач. Дается детальное описание всех компонент оператора Коши, изучаются их свойства. Для компонент с непрерывным временем получены условия их непрерывности по второму аргументу, влияющие на возможность выбора класса управляющих воздействий. Упомянутые конструкции систематически используют результаты о матрицах Коши систем ФДУ с непрерывным временем и систем разностных уравнений с дискретным временем.

    In this paper, a class of linear functional differential systems with aftereffect, continuous and discrete times, and impulses (impulse hybrid systems) is considered. The focus of attention is on the structure of the Cauchy operator to the hybrid system under consideration and the representation of their components. Those allow one to give the representation of all trajectories of the hybrid system and to formulate conditions of the solvability for control problems in various classes of controls, to obtain estimates of the attainability sets under constrained control, and to study general linear boundary value problems for the solvability. A detailed description of all components to the Cauchy operator is given and their properties are studied. For the components with continuous time, some conditions of the continuity with respect to the second argument are obtained which is related to deciding on a class of controls. The main results are based on constructions of the Cauchy matrices to systems with continuous time and difference systems.

  8. Рассматривается многомерное уравнение нелинейной диффузии типа пантографа с линейно растущим запаздыванием по времени и масштабированием по пространственным переменным в источнике (стоке). Предложено строить точные решения методом редукции с использованием двух анзацев с квадратичной зависимостью от пространственных переменных. Зависимость решения от пространственных переменных находится из системы алгебраических уравнений, а зависимость от времени находится из системы обыкновенных дифференциальных уравнений с линейно растущим запаздыванием аргумента. Приводится ряд примеров точных решений, как радиально симметричных, так и анизотропных по пространственным переменным.

    We consider a multidimensional pantograph-type nonlinear diffusion equation with a linearly increasing time delay and scaling with respect to spatial variables in the source (sink). It is proposed to construct exact solutions by the reduction method using two ansatzes with a quadratic dependence on spatial variables. The dependence of the solution on spatial variables is found from a system of algebraic equations, and the dependence on time is found from a system of ordinary differential equations with a linearly increasing delay of the argument. A number of examples of exact solutions are given, both radially symmetric and anisotropic with respect to spatial variables.

  9. Рассматривается задача управления линейной системой нейтрального типа с импульсными ограничениями. Кроме того, предполагается заданной система промежуточных условий. Исследуется постановка, в которой допускается исчезающе малое ослабление упомянутых ограничений. В этой связи область достижимости (ОД) в фиксированный момент окончания процесса заменяется естественным асимптотическим аналогом — множеством притяжения (МП). Для построения последнего используется конструкция расширения в классе конечно-аддитивных (к.-а.) мер, используемых в качестве обобщенных управлений. Показано, что МП совпадает с ОД системы в классе обобщенных управлений – к.-а. мер. Исследуется структура упомянутого МП.

    The problem of control of a linear system of neutral type with impulse constraints is developed. In addition, a given system of intermediate conditions is assumed. A setting is investigated in which a vanishingly small relaxation of the mentioned restrictions is allowed. In this regard, the attainability domain (AD) at a fixed time of the end of the process is replaced by a natural asymptotic analog, the attraction set (AS). To construct the latter, we use the construction of an extension in the class of finitely additive (f.-a.) measures used as generalized controls. It is shown that the AS coincides with the AD of the system in the class of generalized controls – f.-a. measures. The structure of the mentioned AS is investigated.

  10. Проводится исследование динамической эволюции шести моделей рассеянных звездных скоплений по данным о фазовых координатах звезд, полученных при численном интегрировании уравнений движения звезд. Для этой цели используются фазовые координаты звезд для 100 равноотстоящих моментов времени от начального t=0 до tm≅5.1τvr (τvr - начальное время бурной релаксации скопления). На этом интервале времени ошибки, связанные с округлением и экспоненциальным нарастанием возмущений в исходных координатах звезд, существенно не сказываются на статистических выводах о характере движения звезд скопления. Метод исследования основан на вычислениях взаимных корреляционных функций C1,2=C1,2(τ,r) (τ - временная задержка, r - расстояние между точками) для флуктуаций фазовой плотности и применении Фурье-преобразования функций C1,2 для расчета спектра частот и дисперсионных соотношений. Анализ графиков функций C1,2, спектров частот и дисперсионных кривых подтверждает существование в моделях волн фазовой плотности, позволяет установить полный спектр радиальных колебаний фазовой плотности, отделить устойчивые колебания от неустойчивых, рассчитать периоды колебаний фазовой плотности и инкременты нарастания неустойчивых колебаний фазовой плотности. Подтверждены теоретические оценки периодов известных неустойчивых гомологических колебаний ядер моделей скоплений. Указываются некоторые астрофизические приложения полученных результатов: возникновение иррегулярных структур в рассеянных скоплениях, слабая турбулентность в движениях звезд скоплений.

    The investigation of dynamical evolution of 6 open cluster models is carried out on data about phase coordinates of stars received by numerical integration of stellar motion equations. To attain the aim the phase coordinates of stars for 100 equidistant moments of time from the initial t=0 to tm≅5.1τvr (τvr is the initial time of cluster violent relaxation), are used. Over the interval of time the rounding-off errors and errors because of exponential growth of initial coordinates perturbations do not affect statistical conclusions about motion behavior of cluster stars. The investigation method is based on calculations of mutual correlation functions C1,2=C1,2(τ,r) (τ  is the time delay, r is the distance between the points) for phase density fluctuations and application of Fourier transformations of functions C1,2 in order to calculate frequency spectra and dispersion relations. The analysis of graphics C1,2, frequency spectra and dispersion curves confirms the existence of phase density waves in cluster models, allows to get a complete spectrum of phase density radial oscillations, to separate stable and unstable oscillations, to calculate the periods of phase density oscillations and increments of unstable phase density oscillations. The theoretical estimations of periods of known unstable homological core oscillations of cluster models are confirmed. Pointed out are some astrophysical applications of results received: the origin of irregular structures in open clusters, weak turbulence of cluster star motions.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref