Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.
краевая задача, априорная оценка, регулярная разрешимость, интегральное уравнение Фредгольма второго рода, резольвента, метод последовательных приближений
A boundary value problem for a fourth order partial differential equation with the lowest term, pp. 3-10In this paper we study a boundary value problem for the fourth order partial differential equation with the lowest term in a rectangular domain. For the solution of the problem a priori estimate is obtained. From a priori estimate the uniqueness of the solution of the problem follows. For the proof of the solvability of this problem we use the method of separation of variables. The solvability of this problem is reduced to the Fredholm integral equation of the second kind with respect to unknown function. Integral equation is solved by the method of successive approximations. We find the sufficient conditions for the absolute and uniform convergence of series representing the solution of the problem and the series obtained by differentiation four times with respect x and two times with respect to t.
-
Обратная краевая задача для линеаризованного уравнения Бенни-Люка с нелокальными условиями, с. 166-182Работа посвящена исследованию разрешимости обратной краевой задачи с неизвестным коэффициентом и правой частью, зависящей от времени, для линеаризованного уравнения Бенни-Люка с несамосопряженными краевыми и с дополнительными интегральными условиями. Задача рассматривается в прямоугольной области. Дается определение классического решения поставленной задачи. Сначала рассматривается вспомогательная обратная краевая задача и доказывается ее эквивалентность (в определенном смысле) исходной задаче. Для исследования вспомогательной обратной краевой задачи сначала используется метод разделения переменных. После применения формальной схемы метода разделения переменных решение прямой краевой задачи (при заданной неизвестной функции) сводится к решению задачи с неизвестными коэффициентами. После этого решение задачи сводится к решению некоторой счетной системы интегро-дифференциальных уравнений относительно неизвестных коэффициентов. В свою очередь, последняя система относительно неизвестных коэффициентов записывается в виде одного интегро-дифференциального уравнения относительно искомого решения. Затем, используя соответствующие дополнительные условия обратной вспомогательной краевой задачи, для определения неизвестных функций получаем систему двух нелинейных интегральных уравнений. Таким образом, решение вспомогательной обратной краевой задачи сводится к системе из трех нелинейных интегро-дифференциальных уравнений относительно неизвестных функций. Строится конкретное банахово пространство. Далее, в шаре из построенного банахова пространства с помощью сжатых отображений доказывается разрешимость системы нелинейных интегро-дифференциальных уравнений, которая также является единственным решением вспомогательной обратной краевой задачи. С использованием эквивалентности задач доказывается существование и единственность классического решения исходной задачи.
Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions, pp. 166-182The paper investigates the solvability of an inverse boundary-value problem with an unknown coefficient and the right-hand side, depending on the time variable, for the linearized Benney-Luke equation with non-self-adjoint boundary and additional integral conditions. The problem is considered in a rectangular domain. A definition of the classical solution of the problem is given. First, we consider an auxiliary inverse boundary-value problem and prove its equivalence (in a certain sense) to the original problem. To investigate the auxiliary inverse boundary-value problem, the method of separation of variables is used. By applying the formal scheme of the variable separation method, the solution of the direct boundary problem (for a given unknown function) is reduced to solving the problem with unknown coefficients. Then, the solution of the problem is reduced to solving a certain countable system of integro-differential equations for the unknown coefficients. In turn, the latter system of relatively unknown coefficients is written as a single integro-differential equation for the desired solution. Next, using the corresponding additional conditions of the inverse auxiliary boundary-value problem, to determine the unknown functions, we obtain a system of two nonlinear integral equations. Thus, the solution of an auxiliary inverse boundary-value problem is reduced to a system of three nonlinear integro-differential equations with respect to unknown functions. A special type of Banach space is constructed. Further, in a ball from a constructed Banach space, with the help of contracted mappings, we prove the solvability of a system of nonlinear integro-differential equations, which is also the unique solution to the auxiliary inverse boundary-value problem. Finally, using the equivalence of these problems the existence and uniqueness of the classical solution of the original problem are proved.
-
О сингулярном интегральном уравнении Вольтерра краевой задачи теплопроводности в вырождающейся области, с. 241-252В работе рассматривается сингулярное интегральное уравнение типа Вольтерра второго рода, к которому методом тепловых потенциалов редуцируются некоторые граничные задачи теплопроводности в областях с границей, изменяющейся со временем. Особенность такого рода задач заключается в том, что область вырождается в точку в начальный момент времени. Соответственно, отличительной особенностью исследуемого интегрального уравнения является то, что интеграл от ядра, при стремлении верхнего предела интегрирования к нижнему не равен нулю. Данное обстоятельство не позволяет решить данное уравнение методом последовательных приближений. Построено общее решение соответствующего характеристического уравнения и методом равносильной регуляризации Карлемана–Векуа найдено решение полного интегрального уравнения. Показано, что соответствующее однородное интегральное уравнение имеет ненулевое решение.
интегральное уравнение, сингулярное интегральное уравнение типа Вольтерра второго рода, метод регуляризации Карлемана–Векуа
On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain, pp. 241-252In this paper, we consider a singular Volterra type integral equation of the second kind, to which some boundary value problems of heat conduction in domains with a boundary varying with time are reduced by the method of thermal potentials. The peculiarity of such problems is that the domain degenerates into a point at the initial moment of time. Accordingly, a distinctive feature of the integral equation under study is that the integral of the kernel, as the upper limit of integration tends to the lower one, is not equal to zero. This circumstance does not allow solving this equation by the method of successive approximations. We constructed the general solution of the corresponding characteristic equation and found the solution of the complete integral equation by the Carleman–Vekua method of equivalent regularization. It is shown that the corresponding homogeneous integral equation has a nonzero solution.
-
Оценки устойчивости решений некоторых обратных задач для интегро-дифференциальных уравнений, с. 75-82В статье исследуются вопросы устойчивости решений обратных задач для двух интегро-дифференциальных уравнений гиперболического типа. Теоремы существования и единственности решений этих задач, в малом, были получены и опубликованы автором ранее. Поэтому в данной работе рассматриваются исключительно вопросы устойчивости этих решений. В теореме 1 доказывается условная устойчивость решения обратной задачи об определении ядра интеграла для интегро-дифференциального уравнения
$$u_{tt}=u_{xx}-\int_0^tk(\tau)u(x,t-\tau)\, d\tau, \qquad (x,t)\in \mathbb{R}\times \mathbb{R}_+,$$ с начальными данными $u\big|_{t=0}=0,$ $u_t\big|_{t=0}=\delta(x)$ и по дополнительной информации о решении прямой задачи $u(0,t)=f_1(t)$, $u_x(0,t)=f_2(t).$ С этой целью обратная задача заменяется эквивалентной системой интегральных уравнений относительно неизвестных функций. Для доказательства теоремы применяется метод последовательных приближений. Далее, используются метод оценок интегральных уравнений и неравенство Гронуолла.
Аналогично доказываемая теорема 2 посвящается оценке условной устойчивости решения обратной задачи об определении ядра интеграла для того же интегро-дифференциального уравнения, в ограниченной по $x$ области $x\in(0,l),$ с начальными $u\big|_{t=0}=0,$ $u_t\big|_{t=0}=\delta'(x)$ и граничными условиями $(u_x-hu)\big|_{x=0}=0,$ $(u_x+Hu)\big|_{x=l}=0$, $t>0$. В этом случае дополнительная информация о решении прямой задачи задается в виде $u(0,t)=f(t)$, $t\geqslant 0$. Здесь $h,H$ - вещественные и конечные числа.
Evaluation of the stability of some inverse problems solutions for integro-differential equations, pp. 75-82The paper investigates the stability of inverse problems solutions for two integro-differential hyperbolic equations. Theorems of existence and uniqueness of these solutions (in the small) have been obtained and published earlier by author. Thus only stability problems of these solutions are considered in this paper. In Theorem 1 we prove conditional stability of the solution of the following inverse problem: determine the kernel of the integral for integro-differential equation
$$u_{tt}=u_{xx}-\int_0^tk(\tau)u(x,t-\tau)\, d\tau, \qquad (x,t)\in \mathbb{R}\times \mathbb{R}_+,$$
with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta(x),$ and additional information about the direct problem solution $u(0,t)=f_1(t)$, $u_x(0,t)=f_2(t).$ The inverse problem is replaced by an equivalent system of integral equations for the unknown functions. To prove the theorem the method of successive approximations is used. Next, the method of estimating the integral equations and Gronwall's inequality are used.
In a similar manner we prove Theorem 2. It is devoted to estimating the conditional stability of the solution of kernel determination problem for the same integro-differential equation in a bounded domain with respect to $x,$ $x\in(0,l),$ with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta'(x),$ and boundary conditions $(u_x-hu)\big|_{x=0}=0$, $(u_x+Hu)\big|_{x=l}=0$, $t>0$. In this case the additional information about the direct problem solution is given as $u(0,t)=f(t)$, $t\geqslant0$. Here $h$ and $H$ are finite real numbers.
-
О предельных циклах, резонансных и гомоклинических структурах в асимметричном уравнении маятникового типа, с. 228-244Рассматриваются периодические по времени возмущения асимметричного уравнения маятникового типа, близкого к интегрируемому стандартному уравнению математического маятника. Для автономного уравнения решается проблема предельных циклов, которая сводится к исследованию порождающих функций Пуанкаре-Понтрягина. Строится разбиение плоскости параметров на области с разным поведением фазовых кривых. Даются основные фазовые портреты для каждой области полученного разбиения. Для неавтономного уравнения изучается вопрос о структуре резонансных зон, к которому приводит решение задачи о синхронизации колебаний. Вычисляются усредненные уравнения маятникового типа, описывающие поведение решений исходного уравнения в индивидуальных резонансных зонах, и проводится их анализ. Устанавливается глобальное поведение решений в ячейках, не содержащих малых окрестностей невозмущенных сепаратрис. С помощью аналитического метода Мельникова и численного моделирования изучаются основные бифуркации неавтономного уравнения, связанные с возникновением негрубых гомоклинических кривых. На плоскости основных параметров строится бифуркационная диаграмма для отображения Пуанкаре, порожденного исходным уравнением, описывающая различные типы гомоклинических касаний сепаратрис седловой неподвижной точки. Обнаруживаются гомоклинические зоны (те области параметров, для которых существуют гомоклинические траектории к седловой неподвижной точки) с негладкими бифуркационными границами.
On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation, pp. 228-244Time-periodic perturbations of an asymmetric pendulum-type equation close to an integrable standard equation of a mathematical pendulum are considered. For an autonomous equation, the problem of limit cycles, which reduces to the study of the Poincaré-Pontryagin generating functions, is solved. A partition of the parameter plane into domains with different behavior of the phase curves is constructed. Basic phase portraits for each domain of the obtained partition are given. For a nonautonomous equation, the question of the structure of the resonance zones, to which the solution of the problem of synchronization of oscillations leads, is studied. Averaged equations of the pendulum type, describing the behavior of solutions of the original equation in individual resonance zones, are calculated and analyzed. The global behavior of solutions in cells that do not contain small neighborhoods of unperturbed separatrices is ascertained. Using the analytical Melnikov method and numerical modeling, the basic bifurcations of the nonautonomous equation associated with the appearance of nonrough homoclinic curves are studied. On the plane of the main parameters, a bifurcation diagram for the Poincaré map generated by the original equation, describing different types of homoclinic tangencies of the separatrices of the saddle fixed point, is constructed. Homoclinic zones (those domains of parameters for which homoclinic trajectories to the saddle fixed point exist) with nonsmooth bifurcation boundaries are found.
-
Представлена классификация форм уравнений динамики систем связанных твёрдых тел со структурой дерева. В основе классификации – компактные матричные формы записи уравнений кинематики и динамики систем тел, полученные с использованием понятия матрицы кинематической структуры и геометрического подхода при описании относительного движения. Единая форма записи уравнений движения удобна для представления и сравнения различных подходов к моделированию динамики систем твёрдых тел. Приведён сравнительный анализ вычислительной эффективности различных методов составления и разрешения уравнений движения систем твёрдых тел.
The classification of the dynamic equations forms for the rigid multibody systems with tree structure has been presented. The classification is based on the compact matrix forms of multibody systems’ kinematic and dynamic equations derived through the matrix of kinematic structure and geometrical approach for relative motion description. The unified form of motion’s equations is suitable for representing and comparing of various approaches to the modeling of rigid multibody systems’ dynamics. The comparative analysis of computational efficiency has been carried out in relation to various methods of formulation and solution for motion equations of rigid multibody systems.
-
Моделирование взаимодействия сверхзвукового потока и деформируемой панели в ударной трубе, с. 156-165Рассматриваются постановка и алгоритм решения сопряженной задачи взаимодействия сверхзвукового потока и деформируемой панели. Течение газа описывается системой уравнений сохранения в приближении совершенного газа. Численное интегрирование выполняется на основе метода конечных объемов. Для вычисления конвективных потоков применялась монотонизированная схема, обеспечивающая второй порядок аппроксимации по пространству в областях гладкости. Задача динамики деформирования панели аппроксимировалась по пространству методом конечных элементов, а по времени по схеме Ньюмарка. При решении задач использовались несогласованные неструктурированные сетки, отвечающие разным схемам дискретизации и требованиям аппроксимации. Условия сопряжения на границе раздела удовлетворялись при помощи алгоритма двустороннего слабого связывания. Численные результаты сопоставляются с известными экспериментальными данными. Проводится анализ различных факторов, влияющих на картину течения и форму колебаний пластины.
математическое моделирование, сопряжённая задача, газовая динамика, упругое деформирование, ударная труба.
Modeling of interaction of a supersonic stream and the deformable panel in a shock tube , pp. 156-165This paper presents an algorithm for solving the FSI problem of gas-structure interaction between a supersonic flow and a deformable panel. Gas flows are modelled by the system of conservation equations for a perfect gas. Numerical integration is based on the finite volume method. To approximate convective flows in space, a monotonic scheme is used, providing a second-order approximation in the smooth parts of the domain. For dynamic panel deformation, the finite element method is used to discretize the spatial variables and the Newmark method is used to discretize the time variable. Numerical solution of the FSI problem is obtained on nonmatching unstructured meshes providing different discretization and approximation schemes. Boundary interactions are modelled by the algorithm of bidirectional weak binding. Obtained numerical results are compared with available experimental data. A number of different factors affecting the gas flow and the panel shape are analyzed.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.