Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'uniformly continuity':
Найдено статей: 19
  1. Рассматривается вопрос о существовании рекуррентных и почти рекуррентных сечений многозначных отображений R ∋ tF(t) ∈ compU с непустыми компактными образами F(t) в полном метрическом пространстве U. На множестве compU вводится метрика Хаусдорфа dist. Рекуррентные и почти рекуррентные многозначные отображения определяются как функции со значениями в метрическом пространстве (compU, dist). Доказано существование рекуррентных (почти рекуррентных) сечений многозначных рекуррентных (соответственно, почти рекуррентных) равномерно абсолютно непрерывных отображений. Рассматриваются также отображения R ∋ t → F(t), образы которых состоят из конечного числа точек (зависящего от t). Доказано, что если такое отображение почти рекуррентно, то у него существует почти рекуррентное сечение. Многозначное рекуррентное отображение, образы F(t) которого для всех t ∈ R состоят не более чем из n точек (где n ∈ N), имеет рекуррентное сечение. Если образы многозначного рекуррентного (почти рекуррентного) отображения tF(t) при всех t ∈ R состоят из n точек, то все n непрерывных сечений отображения F рекуррентны (почти рекуррентны).

    In the paper, we consider the problem of existence of recurrent and almost recurrent selections of multivalued mappings R ∋ tF(t) ∈ compU with nonempty compact sets F(t) in a complete metric space U. The set compU is equipped with the Hausdorff metric dist. Recurrent and almost recurrent multivalued maps are defined as the functions with values in the metric space (compU, dist). It is proved that there are recurrent (almost recurrent) selections of multivalued recurrent (almost recurrent) uniformly absolutely continuous maps. We also consider mappings R ∋ tF(t) with the sets F(t) consisting of a finite number of points (the number depends on the t ∈ R). We prove that if such a map is almost recurrent, then it has an almost recurrent selection. A multivalued recurrent mapping tF(t) with sets F(t) consisting of at most n points (where n ∈ N) has a recurrent selection. If the sets F(t) of a multivalued recurrent (almost recurrent) mapping tF(t) consist of n points for all t ∈ R, then all n continuous selections of the map F are recurrent (almost recurrent).

  2. Работа посвящена изучению наилучших равномерных рациональных приближений (НРРП) непрерывных функций на компактных, в том числе конечных, подмножествах числовой оси $\mathbb{R}$. Показано, что НРРП на конечном множестве существует не всегда. Более подробно изучен алгоритм Гельмута Вернера поиска НРРП вида $P_m/Q_n = \sum\limits_{i=0}^m a_i x^i \big/ \sum\limits_{j=0}^n b_j x^j$ для функций на множестве из $N=m+n+2$ точек $x_1<\ldots<x_N$. Этот алгоритм может использоваться в алгоритме Ремеза поиска НРРП на отрезке. При работе алгоритма Вернера вычисляется $(n+1)$ вещественное собственное значение $h_1,\ldots,h_{n+1}$ для пучка матриц $A-hB$, где $A$ и $B$ - некоторые симметричные матрицы. Каждому собственному значению сопоставляется своя рациональная дробь вида $P_m/Q_n$, являющаяся кандидатом на наилучшее приближение. Поскольку не более одной из этих дробей свободны от полюсов на отрезке $[x_1, x_N]$, то возникает задача отыскания того собственного значения, которому соответствует рациональная дробь без полюсов. В работе показано, что если $m=0$, все значения $f(x_1),-f(x_2),\ldots,(-1)^{n+2} f(x_{n+2})$ различны и НРРП положительно (отрицательно) во всех точках $x_1,\ldots,x_{n+2}$, то это собственное значение занимает $[(n+2)/2]$-е ($[(n+3)/2]$-е) место по величине. Приведены три численных примера, иллюстрирующих это утверждение.

    The paper deals with the best uniform rational approximations (BURA) of continuous functions on compact (and even finite) subsets of real axis $\mathbb{R}$.The authors show that BURA does not always exist. They study the algorithm of Helmut Werner in more detail. This algorithm serves to search for BURA of the type $P_m/Q_n = \sum\limits_{i=0}^m a_i x^i \big/ \sum\limits_{j=0}^n b_j x^j$ for functions on a set of $N=m+n+2$ points $x_1<\ldots<x_N$. It can be used within the Remez algorithm of searching for BURA on a segment. The Verner algorithm calculates $(n+1)$ real eigenvalues $h_1,\ldots,h_{n+1}$ for the matrix pencil $A-hB$, where $A$ and $B$ are some symmetric matrices. Each eigenvalue generates a rational fraction of the type $P_m/Q_n$ which is a candidate for the best approximation. It is known that at most one of these fractions is free from poles on the segment $[x_1, x_N]$, so the following problem arises: how to determine the eigenvalue which generates the rational fraction without poles? It is shown that if $m=0$ and all values $f(x_1),-f(x_2),\ldots,(-1)^{n+2} f(x_{n+2})$ are different and the approximating function is positive (negative) at all points $x_1,\ldots,x_{n+2}$, then this eigenvalue ranks $[(n+2)/2]$-th ($[(n+3)/2]$-th) in value. Three numerical examples illustrate this statement.

  3. Утверждается, что если в дополнение к условиям существования и единственности решения x(t, t0, μ) n-векторной задачи Коши dx/dt = f(t, x, μ) (tI, μM), x(t0) = x0 и непрерывной зависимости его от параметра μM потребовать равностепенную непрерывность семейства {f(t, x, ·)}(t,x), то x(t, t0, μ) равномерно непрерывно зависит от параметра μ на открытом множестве M. Для линейной n×n-матричной задачи Коши dX/dt = A(t, μ)X + (t, μ) (tI, μM), X(t0, μ) = X0(μ) аналогичное утверждение доказывается в предположении равномерной произвольной малости интегралов ∫I||A(t, μ1) − A(t, μ2)|| dt и ∫I||(t, μ1) − (t, μ2)|| dt при достаточной малости ||μ1μ2|| (μ1, μ2M).

    We prove that if, in addition to the assumptions that guarantee existence, uniqueness and continuous dependence on parameter μ ∈ M of solution x(t, t0,μ) of a n-dimensional Cauchy problem dx/dt = f(t, x, μ) (t ∈ I, μ ∈ M), x(t0) = x0 one requires that the family {f(t, x, ·)}(t,x) is equicontinuous, then the dependence of x(t, t0,μ) on parameter μ in an open M is uniformly continuous. Analogous result for a linear n × n-dimensional Cauchy problem dX/dt = A(t, μ)X + (t, μ) (t ∈ I, μ ∈ M), X(t0, μ) = X0(μ is valid under the assumption that the integrals I||A(tμ1) − A(t, μ2)||dt and I||(t, μ1) − (t, μ2)||dt are uniformly arbitrarily small, provided that ||μ1 − μ2||, μ1, μ2 ∈ M, is sufficiently small.

  4. Понятие равномерной полной управляемости линейной системы, введенное Р. Калманом, играет ключевую роль в задачах управления асимптотическими характеристиками линейных систем управления, замкнутых по принципу линейной обратной связи. Е.Л. Тонков установил необходимое и достаточное условие равномерной полной управляемости для систем с кусочно-непрерывными и ограниченными коэффициентами. Критерий Тонкова можно положить в основу определения равномерной полной управляемости. Если условия на коэффициенты системы ослабить, то определения Калмана и Тонкова перестают совпадать. Здесь установлены необходимые условия и достаточные условия равномерной полной управляемости по Калману и по Тонкову для систем с измеримыми, локально суммируемыми коэффициентами. Введено определение равномерной полной управляемости, которое обобщает определение Тонкова и совпадает с определением Калмана, если матрица $B(\cdot)$ ограничена. Доказаны некоторые известные результаты об управляемости линейных систем, в которых можно ослабить требования на коэффициенты. Доказано, что если линейная управляемая система $\dot x=A(t)x+B(t)u$, $x\in\mathbb{R}^n$, $u\in\mathbb{R}^m$, с измеримой ограниченной матрицей $B(\cdot)$ равномерно вполне управляема в смысле Калмана, то для любой измеримой и интегрально ограниченной $m\times n$-матричной функции $Q(\cdot)$ система $\dot x=(A(t)+B(t)Q(t))x+B(t)u$ равномерно вполне управляема по Калману.

    The notion of uniform complete controllability of linear system introduced by R. Kalman plays a key role in problems of control of asymptotic properties for linear systems closed by linear feedback control. E.L. Tonkov has found a necessary and sufficient condition of uniform complete controllability for systems with piecewise continuous and bounded coefficients. The Tonkov criterion can be considered as the definition of uniform complete controllability. If the coefficients of the system satisfy weak conditions then the definitions of Kalman and Tonkov are not coincide. We obtain necessary conditions and sufficient conditions for uniform complete controllability in the sense of Kalman and Tonkov for systems with measurable and locally integrable coefficients. We introduce a new definition of uniform complete controllability that extends the definition of Tonkov and coincides with the definition of Kalman providing the matrix $B(\cdot)$ is bounded. We prove some known results on the controllability of linear systems that allow the weakening of the requirements on the coefficients. We prove that if a linear control system $\dot x=A(t)x+B(t)u$, $x\in\mathbb{R}^n$, $u\in\mathbb{R}^m$, with measurable and bounded matrix $B(\cdot)$ is uniformly completely controllable in the sense of Kalman then for any measurable and integrally bounded $m\times n$-matrix function $Q(\cdot)$ the system $\dot x=(A(t)+B(t)Q(t))x+B(t)u$ is also uniformly completely controllable in the sense of Kalman.

  5. Рассматривается динамическая система сдвигов в пространстве ℜ непрерывных функций, принимающих значения в полном метрическом пространстве (clos(Rn), ρcl) непустых замкнутых подмножеств в Rn. Расстояние между функциями в этом пространстве определяется с помощью аналога метрики Бебутова в пространстве вещественных функций, определенных и непрерывных на всей числовой оси. Показано, что для компактности замыкания траектории точки в ℜ достаточно, чтобы исходная функция была ограничена и равномерно непрерывна в метрике ρcl. Как следствие, доказано, что замыкание траектории рекуррентного движения или траектории почти периодического движения в ℜ компактно.

    In the work there is considered the dynamical system of translations in the space  of continuous multi-valued functions with images in complete metric space (clos(Rn), ρcl) of nonempty closed subsets of Rn. The distance between such functions is measured by means of the metric analogous to the Bebutov metric constructed for the space of continuous real-valued functions defined on the whole real line. It is shown that for compactness of the trajectory’s closure in  it is sufficient to have initial function bounded and uniformly continuous in the ρcl metric. As consequence, it is also proved that the trajectory’s closure of a recurrent or an almost periodic motion is compact in .

  6. Исследовано свойство равномерной полной управляемости (по Калману) линейной управляемой системы с дискретным временем

    $$x(t+1)=A(t)x(t)+B(t)u(t), \quad t\in\mathbb{N}_0, \quad (x,u)\in\mathbb{R}^n\times\mathbb{R}^m. \qquad(1)$$

    Установлено, что если система $(1)$ равномерно вполне управляема, то матрица $A(\cdot)$ вполне ограничена на $\mathbb N_0$ (т.е. $\sup_{t\in\mathbb{N}_0}(|A(t)|+|A^{-1}(t)|)<+\infty$), а матрица $B(\cdot)$ ограничена на $\mathbb{N}_0$. Доказано, что система $(1)$ равномерно вполне управляема тогда и только тогда, когда при некотором $\vartheta\in \mathbb N$ при всех $\tau\in\mathbb N_0$ для матриц

    $$W_1(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(t,s+1)B(s)B^*(s)X^*(t,s+1),\quad$$

      $$W_2(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(\tau,s+1)B(s)B^*(s)X^*(\tau,s+1)$$

    выполнены неравенства $\alpha_1 I\leqslant W_1(\tau+\vartheta,\tau)\leqslant\beta_1 I$, $\alpha_2 I\leqslant W_2(\tau+\vartheta,\tau)\leqslant\beta_2 I$ с некоторыми положительными $\alpha_i$ и $\beta_i$. На основании этого утверждения доказан критерий равномерной полной управляемости системы $(1)$, аналогичный критерию Тонкова равномерной полной управляемости систем с непрерывным временем: система $(1)$ $\vartheta$-равномерно вполне управляема тогда и только тогда, когда матрица $A(\cdot)$ вполне ограничена на $\mathbb N_0$; матрица $B(\cdot)$ ограничена на $\mathbb N_0$; существует число $\ell=\ell(\vartheta)>0$ такое, что для любого $\tau\in\mathbb{N}_0$ и для любого $x_1\in\mathbb{R}^n$ существует управление $u(t)$, $t\in[\tau,\tau+\vartheta)$, которое переводит решение системы $(1)$ из точки $x(\tau)=0$ в точку $x(\tau+\vartheta)=x_1$ при этом выполнено неравенство $|u(t)|\leqslant \ell |x_1|$, $t\in[\tau,\tau+\vartheta)$.

     

    We study the property of uniform complete controllability (according to Kalman) for a discrete-time linear control system

    $$x(t+1)=A(t)x(t)+B(t)u(t), \quad t\in\mathbb{N}_0, \quad (x,u)\in\mathbb{R}^n\times\mathbb{R}^m. \qquad(1)$$

    We prove that if the system $(1)$ is uniformly completely controllable, then the matrix $A(\cdot)$ is completely bounded on $\mathbb N_0$ (i.e. $\sup_{t\in\mathbb{N}_0}(|A(t)|+|A^{-1}(t)|)<+\infty$) and the matrix $B(\cdot)$ is bounded on $\mathbb N_0$. We prove that the system $(1)$ is uniformly completely controllable if and only if there exists a $\vartheta\in \mathbb N$ such that for all $\tau\in\mathbb N_0$ the inequalities $\alpha_1 I\leqslant W_1(\tau+\vartheta,\tau)\leqslant\beta_1 I$, $\alpha_2 I\leqslant W_2(\tau+\vartheta,\tau)\leqslant\beta_2 I$ hold for some positive $\alpha_i$ and $\beta_i$, where

    $$W_1(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(t,s+1)B(s)B^*(s)X^*(t,s+1),\quad$$

    $$W_2(t,\tau)\doteq\sum_{s=\tau}^{t-1} X(\tau,s+1)B(s)B^*(s)X^*(\tau,s+1)$$

    On the basis of this statement, we prove the following criterion for uniform complete controllability of the system $(1)$, which is similar to the Tonkov criterion of uniform complete controllability for continuous-time systems: the system $(1)$ is $\vartheta$-uniformly completely controllable if and only if the matrix $A(\cdot)$ is completely bounded on $\mathbb N_0$; the matrix $B(\cdot)$ is bounded on $\mathbb N_0$; there exists an $\ell=\ell(\vartheta)>0$ such that for every $\tau\in\mathbb{N}_0$ and for any $x_1\in\mathbb{R}^n$ there exists a control function $u(t)$, $t\in[\tau,\tau+\vartheta)$, which transfers the solution of the system $(1)$ from the state $x(\tau)=0$ to the state $x(\tau+\vartheta)=x_1$, and the inequality $|u(t)|\leqslant \ell |x_1|$ holds for all $t\in[\tau,\tau+\vartheta)$.

     

  7. Рассматривается линейная управляемая система $$\dot x=A(t)x+B(t)u,\quad t\in\mathbb R,\quad x\in\mathbb R^{n},\quad u\in\mathbb R^{m}, \qquad \qquad (1)$$ в предположении непрерывности по $t$ и $s$ матрицы Коши $X(t,s)$ свободной системы $\dot x=A(t)x$. На каждом отрезке $[\tau,\tau+\vartheta]$ фиксированной длины $\vartheta$ задается нормированное пространство $Z_{\tau}$ функций, определенных на этом отрезке. Управление $u$ на отрезке $[\tau,\tau+\vartheta]$ называется допустимым, если $u\in Z_{\tau}$ и существует $\mathcal Q_{\tau}(u):=\int_{\tau}^{\tau+\vartheta}X(\tau,s)B(s)u(s)\,ds$. Векторное подпространство $U_{\tau}$ пространства $Z_{\tau}$, на котором определен оператор $\mathcal Q_{\tau}$, называется пространством допустимых управлений для системы $(1)$ на отрезке $[\tau,\tau+\vartheta]$. Предложено определение равномерной полной управляемости системы $(1)$ для случая произвольной зависимости пространства допустимых управлений от момента начала процесса управления. Получены прямые и двойственные необходимые и достаточные условия равномерной полной управляемости линейной системы в этой ситуации. Показано, что при должном выборе пространства допустимых управлений полученные условия эквивалентны классическим определениям равномерной полной управляемости.

    Makarov E.K., Popova S.N.
    On the definition of uniform complete controllability, pp. 326-343

    We consider a linear control system $$\dot x = A(t)x + B(t)u,\quad t\in\mathbb{R},\quad x\in\mathbb{R}^{n},\quad u\in\mathbb{R}^{m}, \qquad \qquad(1)$$ under the assumption that the transition matrix $X(t,s)$ of the free system $\dot x = A(t)x$ is continuous with respect to $t$ and $s$ separately. We also suppose that on each interval $[\tau, \tau + \vartheta]$ of fixed length $\vartheta$ the normed space $Z_{\tau} $ of functions defined on this interval is given. A control $u$ on the interval $[\tau, \tau+\vartheta]$ is called admissible if $u\in Z_{\tau}$ and there exists the integral $\mathcal Q_{\tau}(u):=\int_{\tau}^{\tau+\vartheta}X(\tau,s)B(s)u(s)\,ds$. The vector subspace $U_{\tau}$ of the space $Z_{\tau}$ where the operator $\mathcal Q_{\tau}$ is defined is called the space of admissible controls for the system $(1)$ on the interval $[\tau,\tau +\vartheta]$. We propose a definition of uniform complete controllability of the system $(1)$ for the case of an arbitrary dependence of the space of admissible controls on the moment of the beginning of the control process. In this situation direct and dual necessary and sufficient conditions for uniform complete controllability of a linear system are obtained. It is shown that with proper choice of the space of admissible controls, the resulting conditions are equivalent to the classical definitions of uniform complete controllability.

  8. В настоящей работе мы изучаем спектральную задачу для дифференциального оператора второго порядка с инволюцией и с краевыми условиями типа Дирихле. Построена функция Грина изучаемой краевой задачи. Получены равномерные оценки функций Грина рассматриваемых краевых задач. Установлена равносходимость разложений произвольной функции из класса $L_{1}(-1,1)$ по собственным функциям двух дифференциальных операторов второго порядка с инволюцией с краевыми условиями типа Дирихле. Мы используем интегральный метод, основанный на функции Грина дифференциального оператора второго порядка с инволюцией и со спектральным параметром. Как следствие из доказанной теоремы о равносходимости разложений по собственным функциям, мы доказываем базисность в пространстве $L_{2}(-1,1)$ собственных функций спектральной задачи с непрерывным комплекснозначным коэффициентом $q(x).$

    In the present paper we study the spectral problem for the second-order differential operators with involution and boundary conditions of Dirichlet type. The Green's function of this boundary problem is constructed. Uniform estimates of the Green's functions for the boundary value problems considered are obtained. The equiconvergence of eigenfunction expansions of two second-order differential operators with involution and boundary conditions of Dirichlet type for any function in $L_{2}(-1,1)$ is established. We use an integral method based on the application of the Green's function of a differential operator with involution and spectral parameter. As a corollary from the equiconvergence theorem, it is proved that the eigenfunctions of the spectral problem form the basis in $L_{2}(-1,1)$ for any continuous complex-valued coefficient $q(x)$.

  9. На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации нормальной производной потенциала простого слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho =(r^{2} -d^{2} )^{1/2} $, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^{5}$, а также на самой границе. Также доказано, что на границе аппроксимации по аналогии с точной функцией терпят разрыв, величина которого пропорциональна значениям интерполированной функции плотности, но могут быть доопределены на границе до функций, непрерывных или на замкнутой внутренней, или на замкнутой внешней приграничной области. Теоретические выводы о равномерной сходимости подтверждены результатами вычисления нормальной производной вблизи границы единичного круга.

    On the basis of piecewise quadratic interpolation, semi-analytical approximations of the normal derivative of the simple layer potential near and on the boundary of a two-dimensional domain are obtained. To calculate the integrals formed after the interpolation of the density function, exact integration over the variable $\rho=(r^{2}-d^{2})^{1/2} $ is used, where $d$ and $r$ are the distances from the observed point to the boundary of the domain and to the boundary point of integration, respectively. The study proves the stable convergence of such approximations with cubic velocity uniformly near the boundary of the class $C^{5}$, as well as on the boundary itself. It is also proved that, by analogy with the exact function, the approximations suffer a discontinuity at the boundary, the magnitude of which is proportional to the values of the interpolated density function, but they can be extended on the boundary to functions that are continuous either on a closed internal border domain or on a closed external one. Theoretical conclusions about uniform convergence are confirmed by the results of calculating the normal derivative near the boundary of a unit circle.

  10. Результаты исследований Е.Л. Тонкова и Е.А. Панасенко распространяются на дифференциальные уравнения и управляемые системы с импульсным воздействием. В терминах функций Ляпунова и производной Кларка получены теоремы сравнения для систем с импульсным воздействием. Рассматривается множество $\mathfrak M\doteq\bigl\{(t,x)\in[t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\},$ заданное непрерывной функцией $t\rightarrow M(t)$, где для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и компактно. Получены условия положительной инвариантности данного множества, равномерной устойчивости по Ляпунову и равномерной асимптотической устойчивости. Проведено сравнение с исследованиями других авторов, которые рассматривали вопросы устойчивости нулевого решения для аналогичных систем.

    We extend the results of E.L. Tonkov and E.A. Panasenko to differential equations and control systems with impulsive actions. In terms of Lyapunov functions and the Clarke derivative we obtain comparison theorems for systems with impulsive effect. We consider the set $\mathfrak M\doteq\bigl\{(t,x)\in[t_0,+\infty)\times\mathbb{R}^n: x\in M(t)\bigr\},$ defined by continuous function $t\rightarrow M(t)$, where for every $t \in \mathbb R$ the set $M(t)$ is nonempty and compact. We obtain conditions for the positive invariance of this set, the uniform Lyapunov stability and the uniform asymptotic stability. We make a comparison with the researches of other authors who have considered the zero solution stability for similar systems.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref