Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Разработана осесимметрическая модель на основе упрощенных уравнений вязкой жидкости для исследования двухслойного течения со свободной границей, создаваемого подъемом жесткого блока фундамента. Получено численное решение полной нелинейной системы и выполнен анализ малых возмущений движения границ слоев. Основной результат заключается в том, что кольцевая структура образуется на поверхности жидкости, если плотность нижнего слоя больше, чем у верхнего. Предлагаемая модель может представлять интерес для геофизики при изучении процесса образования крупномасштабных кольцевых структур на поверхности Земли и других планет.
стоксово течение, многослойные течения, длинноволоновое приближение, нелинейная диффузия, кольцевые структуры
An axisymmetric model of the ring pattern formation in free-surface two-layered creeping flow, pp. 63-74The axisymmetric model based on simplified equations of incompressible viscous fluid is developed to investigate the evolution of free-surface two-layered creeping flow subjected by the uplift of the substrate's block. We numerically solve the nonlinear governing equations and perform the small-amplitude analysis of the behavior of both fluid interfaces. The main result is that a ring pattern does occur on the upper surface provided that the density of the lower layer is greater then that of the upper one. The presented model may be of interest for geophysics to study large-scale ring structures on the Earth and other solid planets.
-
Сформулирована математическая модель обтекания дендрита наклонным потоком вязкой жидкости в гидродинамическом приближении Осеена. Построено аналитическое решение задачи об обтекании параболического дендрита наклонным потоком жидкости в двумерном и трехмерном случаях. В лабораторной системе координат определены компоненты скорости жидкости вблизи вершины дендрита в двумерной и трехмерной геометриях течения с использованием криволинейных координат параболического цилиндра и параболоида вращения. Аналитические решения гидродинамических уравнений Осеена переписаны в системе координат растущего с постоянной скоростью дендрита. В предельном случае нулевого угла между направлением скорости жидкости вдали от дендрита и его осью найденное решение переходит в ранее известное. Проиллюстрирована зависимость приведенной компоненты скорости жидкости от параболических координат при различных коэффициентах наклона течения.
A mathematical model of inclined viscous flow around a dendrite in Oseen's hydrodynamic approximation is formulated. The analytical solution of the problem on inclined viscous flow around a parabolic dendrite in two- and three-dimensional cases is constructed. The components of fluid velocity in the vicinity of the dendritic tip in 2D and 3D flow geometries are determined in the laboratory coordinate system by means of the curvilinear coordinates of parabolic cylinder and paraboloid of revolution. The analytical solutions of Oseen's hydrodynamic equations are rewritten in the coordinate system connected to the dendrite growing with a constant velocity. The obtained solution transforms to the previously known one in the limiting case of zero angle between the fluid velocity direction far from the dendrite and its axis. A scaled component of fluid velocity as a function of parabolic coordinates at different slope coefficients of flow is illustrated.
-
Рассмотрено течение вязкого газа в ограниченном объеме, в котором расположено от одной до четырех сфер. Описан численный метод решения задачи (метод конечных объемов). Представлены результаты расчетов.
Viscous gas flow in restricted volume with 1-4 spheres is considered. Numerical method for problem solution is described. Calculation results are presented.
-
Численно исследуется явление возникновения скоростного бафтинга при обтекании профиля NACA0012 трансзвуковым потоком. Формулируется математическая модель, основанная на алгоритмах высокого порядка аппроксимации, позволяющая рассчитывать нестационарные отрывные течения. Модель базируется на интегрировании квазигидродинамических уравнений. Проводится параметрическое исследование обтекания профиля высокоскоростным потоком вязкого газа в зависимости от угла атаки. Анализируются как мгновенные, так и осредненные картины течения. Получены распределения пульсационных характеристик течений при различных углах атаки. Выявляются закономерности возникновения отрыва пограничного слоя, определено влияние скачков уплотнения на характер течения вблизи поверхности профиля. Определяется критический угол атаки, при котором начинает иметь место скоростной бафтинг.
скоростной бафтинг, скачок уплотнения, квази-гидродинамические уравнения, прямое численное моделирование, аппроксимация высокого порядкаNumerically, the phenomenon of the appearance of high-speed bufting is investigated for the case of a transonic flow past the NACA0012 airfoil. A mathematical model based on high-order approximation algorithms is formulated, which makes it possible to calculate nonstationary separated flows. The model is based on the integration of quasi-hydrodynamic equations. A parametric investigation of high-velocity viscous gas flow past an airfoil as a function of the angle of attack is carried out. Both instantaneous and averaged flow patterns are analyzed. The distributions of the pulsation characteristics of flows are obtained at different angles of attack. Regularities in the onset of detachment of the boundary layer are revealed, and the effect of shock waves on the nature of the flow near the surface of the airfoil is determined. The critical angle of attack at which high-speed bufting begins is determined.
-
О влиянии пористости на режим развития неустойчивости течения жидкости над слоем пористой среды, с. 134-144Описаны результаты линейного анализа устойчивости плоскопараллельного течения несжимаемой жидкости над слоем насыщенной пористой среды при различных значениях ее пористости. Рассматривается ограниченная двухслойная система, состоящая из слоя однородной недеформируемой пористой среды конечной толщины и слоя несжимаемой однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как свободная, но недеформируемая. Выполнен анализ линейной устойчивости стационарного течения в такой системе в условиях существования бимодальной нейтральной кривой и варьировании пористости нижнего слоя. Продемонстрирован переход между двумя основными модами неустойчивости: длинноволновой, связанной с точками перегиба в профиле течения, и коротковолновой, обусловленной большим поперечным градиентом скорости течения вблизи границы раздела жидкости и пористой среды. Уменьшение пористости влечет стабилизацию длинноволновых возмущений без существенного изменения критического волнового числа. Коротковолновые возмущения при этом дестабилизируются, а их критическое волновое меняется в широких пределах. При значении пористости меньше 0.7 инерционные слагаемые в уравнении фильтрации и величина механических напряжений на границе раздела возрастают настолько, что доминирующим механизмом развития неустойчивости становится аналог неустойчивости Кельвина-Гельмгольца. В узком интервале пористости реализуется полоса устойчивости течения, разделяющая ветви нейтральной кривой.
The stability of incompressible fluid plane-parallel flow over a layer of a saturated porous medium is studied. The results of a linear stability analysis are described at different porosity values. The considered system is bounded by solid wall from the porous layer bottom. Top fluid surface is free and rigid. A linear stability analysis of plane-parallel stationary flow is presented. It is realized for parameter area where the neutral stability curves are bimodal. The porosity variation effect on flow stability is considered. It is shown that there is a transition between two main instability modes: long-wave and short-wave. The long-wave instability mechanism is determined by inflection points within the velocity profile. The short-wave instability is due to the large transverse gradient of flow velocity near the interface between liquid and porous medium. Porosity decrease stabilizes the long wave perturbations without significant shift of the critical wavenumber. Simultaneously, the short-wave perturbations destabilize, and their critical wavenumber changes in wide range. When the porosity is less than 0.7, the inertial terms in filtration equation and magnitude of the viscous stress near the interface increase to such an extent that the Kelvin-Helmholtz analogue of instability becomes the dominant mechanism for instability development. The stability band realizes in narrow porosity area. It separates the two branches of the neutral curve.
-
Рассматривается движение жидкости, вызванное взаимодействием набегающей гравитационной волны, распространяющейся по свободной поверхности слоя вязкой несжимаемой жидкости, с круговым цилиндром, имеющим вертикальные образующие. Нелинейная краевая задача, описывающая такое движение, сведена к задаче для вертикальной компоненты вектора скорости, которая представляется в виде суммы потенциальной и вихревой составляющей. Получено решение данной задачи для случая колебаний малой амплитуды. Проведено сравнение поля скоростей для вязкой и идеальной жидкости.
The motion of fluid due to the interaction of an incident gravitational wave spreading on the surface of viscous incompressible fluid with a circular cylinder having vertical elements is considered. A nonlinear boundary-value problem is reduced to determining the vertical component of a velocity vector represented by a sum of potential and rotational parts. The problem is solved for the small-amplitude oscillations. The comparison of the velocity field between the ideal and viscous liquids is made.
-
Рассмотрены закрученные ламинарные осесимметричные течения вязких несжимаемых жидкостей в потенциальном поле массовых сил. Исследования течений осуществляются в цилиндрической системе координат. В течениях отдельно рассматриваются области, в которых осевая производная окружной скорости не может принимать нулевое значение в какой-нибудь открытой окрестности (существенно закрученные течения), и области, в которых эта производная равна нулю (область со слоистой закруткой). Показано, что для областей со слоистой закруткой можно применять известный метод (метод вязких вихревых доменов), разработанный для незакрученных течений. Для существенно закрученных течений получена формула для вычисления радиально-осевой скорости воображаемой жидкости через окружную компоненту завихренности, окружную циркуляцию реальной жидкости и частные производные этих функций. Частицы этой воображаемой жидкости «переносят» вихревые трубки радиально-осевой составляющей завихренности с сохранением интенсивности этих трубок, а также «переносят» величину окружной циркуляции и произведение окружной составляющей завихренности на некоторую функцию расстояния до оси симметрии. Предложен неинтегральный способ восстановления поля скорости по полю завихренности. Он сводится к решению системы линейных алгебраических уравнений с двумя переменными. Полученный результат предлагается использовать для распространения метода вязких вихревых доменов на закрученные осесимметричные течения.
уравнения Навье-Стокса, течение с закруткой, метод дискретных вихрей, теоремы Гельмгольца о вихрях, метод вязких вихревых доменовSwirling laminar axisymmetric flows of viscous incompressible fluids in a potential field of body forces are considered. The study of flows is carried out in a cylindrical coordinate system. In the flows, the regions in which the axial derivative of the circumferential velocity cannot take on zero value in some open neighborhood (essentially swirling flows) and the regions in which this derivative is equal to zero (the region with layered swirl) are considered separately. It is shown that a well-known method (the method of viscous vortex domains) developed for non-swirling flows can be used for regions with layered swirling. For substantially swirling flows, a formula is obtained for calculating the radial-axial velocity of an imaginary fluid through the circumferential vorticity component, the circumferential circulation of a real fluid, and the partial derivatives of these functions. The particles of this imaginary fluid “transfer” vortex tubes of the radial-axial vorticity component while maintaining the intensity of these tubes, and also “transfer” the circumferential circulation and the product of the circular vorticity component by some function of the distance to the axis of symmetry. A non-integral method for reconstructing the velocity field from the vorticity field is proposed. It is reduced to solving a system of linear algebraic equations in two variables. The obtained result is proposed to be used to extend the method of viscous vortex domains to swirling axisymmetric flows.
-
В работе рассматриваются результаты решения задачи стационарного течения вязкой несжимаемой жидкости в плоском канале с обратным уступом и прогреваемой нижней стенкой в широком диапазоне числа Рейнольдса $100\leqslant \text{Re}\leqslant 1000$ и параметра расширения потока $1.11 \leqslant ER \leqslant 10$. Исследование выполнено путем численного интегрирования системы двумерных уравнений Навье-Стокса в переменных «скорость-давление» на равномерных сетках с шагом 1/300. Достоверность полученных результатов подтверждается их сравнением с литературными данными. Приводятся подробные картины течения и перегрева жидкости в зависимости от двух основных параметров задачи: $\text{Re}$ и $ER$. Показывается, что с одновременным ростом параметров $\text{Re}$ и $ER$ существенно усложняется структура течения - увеличиваются количество вихрей и их размеры вплоть до образования вихря за уступом с двумя центрами вращения. Также показывается, что характерная высота зоны прогрева течения слабо зависит от $\text{Re}$ и $ER$ и в конечном счете ближе к выходу из канала составляет приблизительно половину его высоты. Для всех центров вихрей определяются их основные характеристики: координаты, экстремумы функции тока, завихренности. Анализируется сложное немонотонное поведение профилей коэффициентов трения, сопротивления и теплоотдачи (числа Нуссельта) по длине канала. Показывается, что эти коэффициенты в одинаковой степени сильно зависят как от числа Рейнольдса, так и от параметра расширения канала, достигая своих максимальных значений при максимальных значениях $\text{Re}$ и $ER$.
The paper deals with the results of solving the problem of steady-state flow of a viscous incompressible fluid in a plane channel with a backward-facing step and a heated bottom wall for the Reynolds number in the range $100\leqslant \text{Re}\leqslant1000$ and the expansion ratio of a plane channel in the range $1.11 \leqslant ER \leqslant 10$. The study was carried out by numerical integration of the 2-D Navier-Stokes equations in velocity-pressure formulation on uniform grids with a step which equals to 1/300. Correction of the results is confirmed by comparing them with the literature data. Detailed flow patterns and fields of stream overheating depending on two basic parameters of the problem $\text{Re}$ and $ER$ are demonstrated. It is shown that with the increase of parameters $\text{Re}$ and $ER$ the structure of flow becomes much more complicated, that is, there is an increase of the number of vortices and their sizes up to the formation of a vortex behind the backward-facing step with two centers of rotation. It is also stated that the typical height of the heating zone of the flow depends weakly on $\text{Re}$ and $ER$ and eventually, near the exit of the channel, equals approximately half of the channel height. For all centers of vortices their main characteristics are defined: location, extremums of stream function, vorticity. Complex nonmonotonic behaviors of the coefficients of friction, hydrodynamic resistance and heat transfer (Nusselt number) along the channel are analyzed. It is shown that these coefficients strongly depend both on Reynolds number and on expansion ratio, reaching the maximum values at the maximum values of $\text{Re}$ and $ER$.
-
Использование схемы WENO для моделирования турбулентного течения в канале с обратным уступом, с. 460-469Представлена методика моделирования турбулентного течения вязкого газа, основанная на схеме высокого порядка аппроксимации WENO (взвешенная существенно неосциллирующая схема). Данная схема характеризуется значительной устойчивостью при выполнении расчетов, так как WENO позволяет устранять нефизичные осцилляции численного решения, которые могут возникнуть в ходе вычислений. Приведена система определяющих уравнений, описывающая поток вязкого газа, основанная на системе уравнений Навье-Стокса. Разработаны и реализованы алгоритмы 3-го и 5-го порядков точности. Приведено описание численных методик использованных в расчетах потока газа. Моделирование турбулентности производилось с применением метода крупных вихрей. Предложенные алгоритмы были использованы для исследования течения вязкого газа в канале с обратным уступом. Число Рейнольдса потока газа в канале составляло Re=15000. Проведено сравнение результатов численного моделирования с экспериментальными данными.
Application of WENO scheme for simulation of turbulent flow in a channel with backward-facing step, pp. 460-469The technique of viscous gas turbulent flow simulation based on high-order approximation WENO scheme (Weighted Essentially Non-oscillatory scheme) is described. This scheme is characterized by significant stability when calculations are performed, because WENO allows to eliminate nonphysical oscillations of a numerical solution which can occur during calculations. The system of governing equations describing the flow of viscous gas based on the Navier-Stokes equations is presented. The algorithms of 3-rd and 5-th accuracy orders are developed and implemented. The numerical methods used in the calculations of gas flow are described. Turbulence modeling is carried out using the method of large vortices. The proposed algorithms have been used to study the flow of viscous gas in a channel with backward-facing step. Reynolds number of the flow in the channel was Re=15000. Comparison of simulation results with experimental data has been made.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.