Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'множества притяжения':
Найдено статей: 15
  1. Рассматривается игровая задача на максимин функции платы, определенной на произведении множеств притяжения терминальных состояний систем первого и второго игрока. Данные множества притяжения найдены с помощью конструкций расширения в классе конечно-аддитивных мер.

  2. Рассматривается абстрактная  задача управления и ее релаксации, связанные с ослаблением ограничений на выбор управляющих программ. Исследуются соотношения, связывающие множества допустимых элементов исходной задачи и ее расширения. Получены условия, достаточные для устойчивости (с точностью до замыкания) достижимого множества невозмущенной задачи.

  3. Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из основных задач математической теории управления - задача о сближении фазового вектора управляемой системы с компактным целевым множеством в фазовом пространстве в фиксированный момент времени. В этой работе в качестве целевого множества выбрано множество Лебега скалярной липшицевой функции, определенной на фазовом пространстве. Упомянутая задача о сближении тесно связана с многими важными и ключевыми задачами теории управления, в частности с задачей об оптимальном по быстродействию приведении управляемой системы на целевое множество. Из-за сложности задачи о сближении для нетривиальных управляемых систем аналитическое представление решений невозможно даже для относительно простых управляемых систем. Поэтому в настоящей работе мы изучаем прежде всего вопросы, связанные с конструированием приближенного решения задачи о сближении. Конструирование приближенного решения тем методом, который изложен в работе, связано прежде всего с конструированием интегральной воронки управляемой системы, представленной в так называемом «обратном» времени. К настоящему времени известно несколько алгоритмов конструирования разрешающего программного управления в задаче о сближении. Здесь представлен алгоритм построения управления, основанный на максимальном притяжении движения системы к множеству разрешимости задачи о сближении. В работе приведены примеры.

  4. Рассматривается абстрактная задача о достижимости при ограничениях асимптотического характера, решение в которой отождествляется с множеством притяжения в классе ультрафильтров пространства обычных решений. Исследуется нарост упомянутого множества по отношению к замыканию множества результатов, доставляемых точными решениями (данное понятие на идейном уровне соответствует схеме Дж. Варги, хотя и применяется в случае ограничений более общего характера). Для представления упомянутого (основного) множества притяжения привлекается соответствующий аналог последнего, реализуемый в пространстве обобщенных элементов. Для получаемого таким образом вспомогательного множества притяжения анализируется нарост и исследуется его связь с наростом основного множества притяжения. Получены условия отождествимости наростов основного и вспомогательного множеств притяжения. Общие положения детализируются для случая, когда обобщенные элементы определяются в виде ультрафильтров широко понимаемых измеримых пространств, где за реализацию наростов оказываются ответственными свободные ультрафильтры. Показано, что при наличии нароста множество допустимых обобщенных элементов не совпадает с замыканием какого-либо множества обычных решений (не допускает стандартной реализации).

  5. Рассматривается абстрактная задача о достижимости с ограничениями асимптотического характера. Ограничения такого типа могут возникать при ослаблении стандартных (в теории управления) ограничений, таких как фазовые ограничения, краевые и промежуточные условия, которым должны удовлетворять траектории системы. Однако ограничения асимптотического характера могут возникать и изначально, характеризуя тенденции в части реализации желаемого поведения. Так, например, можно говорить о реализации достаточно мощных импульсов управления исчезающе малой длительности. В этом последнем случае трудно говорить об ослаблении каких-либо стандартных ограничений. Так или иначе, мы сталкиваемся с набором ужесточающихся требований, каждому из которых можно сопоставить некоторый аналог области достижимости в теории управления, а точнее образ подмножества пространства обычных решений (управлений) при действии заданного оператора. В работе исследуются вопросы структуры возникающего (как аналог области достижимости) множества притяжения. Схема исследования базируется на применении специального варианта расширения пространства решений, допускающего естественную аналогию с расширением Волмэна, используемого в общей топологии. В этой ситуации естественно полагать, что пространство обычных решений оснащено некоторой топологией (обычно в этом случае исследуется $T_1$-пространство). В этой связи обсуждаются вопросы, связанные с заменой множеств, формирующих ограничения асимптотического характера, замыканиями и внутренностями, а также (частично) вопросы, связанные с представлением внутренности множества допустимых обобщенных элементов, образующего вспомогательное множество притяжения.

  6. Рассматривается задача управления линейной системой нейтрального типа с импульсными ограничениями. Кроме того, предполагается заданной система промежуточных условий. Исследуется постановка, в которой допускается исчезающе малое ослабление упомянутых ограничений. В этой связи область достижимости (ОД) в фиксированный момент окончания процесса заменяется естественным асимптотическим аналогом — множеством притяжения (МП). Для построения последнего используется конструкция расширения в классе конечно-аддитивных (к.-а.) мер, используемых в качестве обобщенных управлений. Показано, что МП совпадает с ОД системы в классе обобщенных управлений – к.-а. мер. Исследуется структура упомянутого МП.

  7. Рассматриваются общие свойства ультрафильтров π-систем с нулем и единицей, используемые при построении расширений абстрактных задач о достижимости для получения оценок множеств притяжения в топологическом пространстве. Обсуждаются возможности использования упомянутых ультрафильтров в качестве обобщенных элементов. Среди последних выделяются допустимые по отношению к ограничениям асимптотического характера исходной задачи. Целевой оператор данной задачи при очень общих условиях продолжается до непрерывного отображения, сопоставляющего каждому ультрафильтру π-системы предел соответствующего образа. При этом основное множество притяжения (асимптотический аналог множества достижимости) оценивается снизу непрерывным образом аналогичного вспомогательного множества в пространстве ультрафильтров. В частном случае реализации пространства Стоуна (когда используемая π-система является алгеброй множеств) упомянутая оценка превращается в равенство, связывающее искомое и вспомогательное множества притяжения; для последнего указано достаточно простое представление. Обсуждается вариант применения (в оценочных целях) расширения Волмэна.

  8. В задачах управления построение и исследование областей достижимости и их аналогов очень важно. Эта статья адресована задачам о достижимости в топологических пространствах. Используются ограничения асимптотической природы, определяемые в виде непустых семейств множеств. Решение соответствующей задачи о достижимости определяется как множество притяжения. Точки этого множества притяжения (элементы притяжения) реализуются в классе приближенных решений, которые являются несеквенциальными аналогами приближенных решений Варги. Обсуждаются некоторые возможности применяемых компактификаторов. Рассматриваются вопросы реализации множеств притяжения с точностью до заданной окрестности. Исследуются некоторые топологические свойства множеств притяжения. Рассмотрен пример с пустым множеством притяжения.

  9. Рассматриваются ультрафильтры широко понимаемых измеримых пространств, включая пространства с полуалгебрами и алгебрами множеств. Исследуется преобразование, имеющее смысл продолжения ультрафильтра с полуалгебры на алгебру, порожденную упомянутой полуалгеброй; показано, что данное преобразование  гомеоморфизм в смысле естественных оснащений пространств ультрафильтров, реализующих стандартные компакты (в случае измеримого пространства с алгеброй множеств реализуется пространство стоуновского представления). Исследуются вопросы представления множеств притяжения в абстрактной задаче о достижимости с ограничениями асимптотического характера, связанные с применением компактификаций в классе ультрафильтров измеримых пространств с полуалгебрами множеств, а также некоторые аналоги, использующие ультрафильтры π-систем.

  10. Рассматривается конструкция расширения абстрактной задачи о достижимости, реализуемая с использованием компакта Стоуна (пространство ультрафильтров алгебры множеств в традиционном оснащении). Исследуются вопросы, связанные с построением множеств притяжения; последние определяют возможности в части достижимости желаемых состояний в топологическом пространстве при использовании асимптотических аналогов обычных решений. Предполагаются заданными ограничения асимптотического характера, которые, в частности, могут возникать при ослаблении стандартных ограничений, используемых в задачах управления (естественным прототипом исследуемой абстрактной задачи может служить задача о построении асимптотического аналога области достижимости управляемой системы при исчезающе малом ослаблении тех или иных ограничений на выбор программного управления). Используя естественную модификацию подхода Дж. Варги, можно ввести наряду с точными так называемые приближенные решения в виде последовательностей обычных решений, соблюдающих с "нарастающей точностью" условия, составляющие в своей совокупности "асимптотические ограничения". В ряде случаев таких (секвенциальных) приближенных решений оказывается недостаточно. Требуются направленности или фильтры. Последние используются в настоящей работе в качестве основного типа (асимптотических по существу) решений при построении множеств притяжения в задачах о достижимости с ограничениями асимптотического характера; более того, в этих построениях удается ограничиться использованием ультрафильтров. Для одного частного случая на этой основе установлена конкретная структура множества притяжения.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref