Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'разностная схема':
Найдено статей: 10
  1. В прямоугольной области исследуются нелокальные краевые задачи для одномерного нестационарного уравнения конвекции-диффузии дробного порядка с переменными коэффициентами, описывающие диффузионный перенос той или иной субстанции, а также перенос, обусловленный движением среды. Методом энергетических неравенств выводятся априорные оценки решений нелокальных краевых задач в дифференциальной форме. Построены разностные схемы, и для них доказываются аналоги априорных оценок в разностной форме, приводятся оценки погрешности в предположении достаточной гладкости решений уравнений. Из полученных априорных оценок следуют единственность и устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью $O(h^2+\tau^2)$.

  2. Работа посвящена построению приближенных решений краевых задач в прямоугольнике для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя, выступающих в качестве математических моделей движения влаги и солей в почвах с фрактальной организацией. Построены разностные схемы для дифференциальных задач. Методом энергетических неравенств выведены априорные оценки решений рассматриваемых задач в дифференциальной и разностной трактовках. Из полученных априорных оценок следуют единственность, устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью, равной порядку погрешности аппроксимации. Построен алгоритм численного решения разностных схем, полученных при аппроксимации краевых задач для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя. Проведены численные эксперименты, иллюстрирующие полученные в работе теоретические выкладки.

  3. Изучается начально-краевая задача для многомерного псевдопараболического уравнения с переменными коэффициентами и граничными условиями третьего рода. Многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром. Показано, что при стремлении малого параметра к нулю решение полученной модифицированной задачи сходится к решению исходной задачи. Для приближенного решения полученной задачи строится локально-одномерная разностная схема А. А. Самарского. Методом энергетических неравенств получена априорная оценка, откуда следуют единственность, устойчивость и сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи. Для двумерной задачи построен алгоритм численного решения начально-краевой задачи для псевдопараболического уравнения с условиями третьего рода.

  4. Работа посвящена исследованию второй начально-краевой задачи для дифференциального уравнения третьего порядка псевдопараболического типа с переменными коэффициентами в многомерной области с произвольной границей. Рассматриваемое многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром и для полученного уравнения строится локально-одномерная разностная схема А.А. Самарского. С помощью принципа максимума получена априорная оценка решения локально-одномерной разностной схемы в равномерной метрике в норме $C$. Доказаны устойчивость и сходимость локально-одномерной разностной схемы.

  5. В современной физической литературе неоднократно возникала потребность в формулах, позволяющих в квантовой одномерной задаче рассеяния свести вычисление вероятности отражения (прохождения) для потенциала, состоящего из нескольких «барьеров», к вероятностям отражения и прохождения через эти «барьеры». В настоящей работе исследуется задача рассеяния для разностного оператора Шрёдингера с потенциалом, являющимся суммой N функций (описывающих «барьеры» или «слои») с попарно непересекающимися носителями. С помощью уравнения Липпмана-Швингера доказана теорема, позволяющая вычисление амплитуд отражения и прохождения для данного потенциала свести к вычислению амплитуд отражения и прохождения для слагаемых. Для N=2 получены простые явные формулы, осуществляющие такое сведение. Рассмотрены частные случаи четного первого барьера и двух одинаковых четных (после соответствующих сдвигов) барьеров. Разумеется, аналогичные результаты справедливы и для вероятностей отражения и прохождения. Получено простое уравнение для нахождения резонансов двухбарьерной структуры в терминах амплитуд для каждого из двух барьеров.

    В статье также приведена иная схема доказательства полученных результатов, основанная на разложении в ряд T-оператора, позволяющая обосновать физические представления о рассеянии на многослойной структуре как о многократном рассеянии на отдельно взятых слоях. При доказательстве утверждений используется известный прием сведения уравнения Липпмана-Швингера к «модифицированному» уравнению в гильбертовом пространстве, что позволяет, в свою очередь, воспользоваться теорией Фредгольма. Конечно, все полученные результаты остаются справедливыми и для «непрерывного» оператора Шрёдингера, а выбор дискретного подхода обусловлен его растущей популярностью в квантовой теории твердого тела.

  6. Рассматривается уравнение в частных производных первого порядка с эффектом наследственности:

    $$ \frac{\partial u(x,t)}{\partial t} + a \frac{\partial u(x,t)}{\partial x} = f ( x, t, u(x,t), u_t(x,\cdot)),$$ $$u_t(x,\cdot) = \{u(x,t+s), -\tau\leqslant s <0\}.$$

    Для такого уравнения, с позиций принципа разделения конечномерной и бесконечномерной составляющих состояния, строятся сеточные методы: аналог семейства схем бегущего счета, аналог схемы Кранка-Николсон, метод аппроксимации на середину квадрата. Для учета эффекта наследственности применяются одномерная и двойная кусочно-линейная интерполяции и экстраполяция продолжением. Доказывается, что рассмотренные методы имеют порядки локальной погрешности: соответственно $O(h+\Delta)$, $O(h+\Delta^2)$ и $O(h^2+\Delta^2)$, где $h$ - шаг дискретизации по пространственной переменной, $\Delta$ - шаг дискретизации по временной переменной. Исследуются свойства двойной кусочно-линейной интерполяции. Используя результаты общей теории разностных схем, установлены условия устойчивости предложенных методов. С помощью вложения в общую схему численных методов для функционально-дифференциальных уравнений получены теоремы о порядках сходимости сконструированных алгоритмов. Приведены тестовые примеры по сравнению погрешностей методов.

  7. Рассмотрено волновое уравнение с двумя пространственными и одной временной независимыми переменными и эффектом наследственности вида $$\frac{\partial^2 u}{\partial t^2}=a^2\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + f\big(x,y,t,u(x,y,t),u_t(x,y,\cdot)\big),\\u_t(x,y,\cdot)=\left\{u(x,y,t+\xi),-\tau \leqslant \xi\leqslant 0\right\}. $$На основе идеи разделения текущего состояния и функции-предыстории сконструировано семейство сеточных методов для численного решения этого уравнения. По текущему состоянию строится полный аналог известного для уравнения без запаздывания метода с факторизацией, а влияние предыстории учитывается с помощью интерполяционных конструкций. Исследован порядок локальной погрешности алгоритма. Получена теорема о сходимости и порядке сходимости методов с помощью вложения в общую разностную схему систем с последействием. Приводятся результаты расчетов тестового примера с переменным запаздыванием.

  8. Приводится вычислительный алгоритм высокого порядка точности для решения задач аэродинамики и газовой динамики. Метод прямого численного моделирования основан на применении современных схем WENO при аппроксимации по пространству конвективных слагаемых и первых производных системы полных уравнений Навье-Стокса. Вторые производные и диффузионные члены уравнений разрешаются с помощью центрально-разностной схемы высокого порядка точности. Результаты моделирования с использованием метода демонстрируются на примере решения двух задач. Показывается, что вычислительные алгоритмы адекватно воспроизводят физические эффекты, свойственные как дозвуковым течениям (вихревые дорожки), так и сверхзвуковым потокам (разрывы параметров, ударные волны, скачки уплотнения).

  9. Определяется параметрическое семейство конечномерных пространств специальных квадратичных сплайнов лагранжевого типа. В каждом пространстве в качестве решения начально-граничной задачи для простейшего волнового уравнения предлагается оптимальный сплайн, дающий наименьшую невязку, представляющую собой квадрат нормы в пространстве L2. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от конечных разностей дискретно заданных начальных и граничных условий исходной задачи. Формула для невязки J представляет собой положительно определенную квадратичную форму от этих же величин. Коэффициенты обеих форм вычислимы через многочлены Чебышева 2-го рода. Явный вид формулы для невязки позволяет при заданной точности вычислений ε > 0 решить неравенство J < ε2 и получить априори достаточное количество узлов разностной схемы.

    Исследования проведены для одного слоя по времени, имеющего два подслоя. Получены разностные формулы начального условия для частной производной по времени. Они позволяют формировать разностную схему для нового слоя, что, в свою очередь, позволяет продолжать итерационный вычислительный процесс по времени сколь угодно далеко.

  10. Работа посвящена изучению устойчивости стационарных локализованных мод (солитонов щелевого типа) в одномерном нелинейном уравнении Шрёдингера (НУШ) с периодическим потенциалом и отталкивающей нелинейностью. Рассмотрены два класса решений: связанное состояние пары простейших щелевых солитонов из первой запрещенной зоны линейного спектра, находящихся в одной фазе или в противофазе и разделенных некоторым количеством пустых потенциальных ям. Для таких решений с помощью метода коллокации Фурье (Fourier collocation method) и метода функции Эванса (Evans function method) посчитаны линейные спектры задачи об устойчивости. Обнаружено, что если число разделяющих потенциальных ям между щелевыми солитонами нечетно (четно), то решения в одной фазе (в противофазе) экспоненциально неустойчивы. В этом случае, действительные части неустойчивых собственных значений в соответствующих спектрах экспоненциально убывают с ростом числа разделяющих периодов между щелевыми солитонами. С другой стороны, если число разделяющих потенциальных ям четно (нечетно), то решения в одной фазе (в противофазе) линейно устойчивы вдали от верхней границы первой запрещенной зоны, либо демонстрируют слабую осцилляторную неустойчивость вблизи границы запрещенной зоны. Для проверки результатов линейного анализа, был проведен численный счет НУШ с помощью конечно-разностной схемы. В результате эволюции, все рассмотренные в работе экспоненциально неустойчивые щелевые солитоны деформировались в пульсирующие объекты, тогда как устойчивые решения сохранили свой профиль в течение всего времени эксперимента.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref