Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Изучается устойчивость линейных автономных скалярных разностных уравнений с комплексными коэффициентами. Для уравнения с произвольным количеством запаздываний приводится простое доказательство линейной связности его области устойчивости в пространстве коэффициентов. Этот результат позволяет утверждать, что областью устойчивости уравнения в пространстве коэффициентов является область $D$-разбиения этого пространства, содержащая начало координат. Далее рассматриваются некоторые уравнения с двумя запаздываниями и комплексными коэффициентами, для которых даются подробные аналитические и геометрические описания областей равномерной и экспоненциальной устойчивости.
We study the stability of linear autonomous scalar difference equations with complex coefficients. For an equation with an arbitrary number of delays, we propose a simple proof of the linear connectivity of the stability region in the space of coefficients. This result allows us to assert that the stability region of the equation in the space of coefficients is the region of the $D$-decomposition of this space containing the origin of coordinates. Further, we consider some equations with two delays and complex coefficients, for which we give detailed analytic and geometric descriptions of the regions of uniform and exponential stability.
-
Для класса динамических систем, включающего в себя уравнения колебаний упругой балки на упругом основании, автономные системы обыкновенных дифференциальных уравнений, системы гидродинамического типа и др., изложена процедура приближенного вычисления амплитуд периодических решений, бифурцирующих из точек покоя при наличии резонансов.
Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances, pp. 12-22The procedure of approximate calculation of amplitudes for periodic solutions bifurcating from rest points in the presence of resonance is studied for a class of dynamical systems. This class includes equations of spring beam oscillations located on elastic foundations, autonomous systems of ordinary differential equations, hydrodynamical systems etc. The methodological basis of the procedure is the Lyapunov-Schmidt method considered in the context of general theory of smooth SO(2)-equivariant Fredholm equations (in infinite dimensional Banach spaces). The topic of the paper develops and extends the earlier research of B.M Darinsky, Y.I. Sapronov, and V.A. Smolyanov.
-
Изучается вариационный подход к постановке и решению задачи приближения функций квазиполиномами решениями однородных, автономных линейных разностных или дифференциальных уравнений.
линейные автономные дифференциальные и разностные уравнения, ортогональное проектирование, сглаживание, фильтрация, прогнозирование, процесс обновления, быстрые рекуррентные алгоритмы.
On one variational smoothing problem, pp. 9-22We study the variational approach to setting and solving of the function approximating problem by quasipolynomials which are the solutions of the homogeneous autonomous linear difference or differential equations.
-
Изучается задача о воздействии двухчастотных квазипериодических возмущений на системы, близкие к произвольным нелинейным двумерным гамильтоновым в случае, когда соответствующие возмущенные автономные системы имеют двойной предельный цикл. Ее решение имеет важное значение как для теории синхронизации колебаний, так и для теории бифуркаций динамических систем. В случае соизмеримости собственной частоты невозмущенной системы с частотами квазипериодического возмущения имеет место резонанс. Выводятся усредненные системы, позволяющие установить структуру резонансной зоны, то есть описать поведение решений в окрестностях индивидуальных резонансных уровней. Исследование этих систем позволяет установить возможные бифуркации, возникающие при отклонении резонансного уровня от уровня невозмущенной системы, порождающего двойной предельный цикл в возмущенной автономной системе. Полученные теоретические результаты применяются при исследовании двухчастотного квазипериодически возмущенного уравнения маятникового типа и иллюстрируются при помощи численных вычислений.
The problem of the effect of two-frequency quasi-periodic perturbations on systems close to arbitrary nonlinear two-dimensional Hamiltonian ones is studied in the case when the corresponding perturbed autonomous systems have a double limit cycle. Its solution is important both for the theory of synchronization of nonlinear oscillations and for the theory of bifurcations of dynamical systems. In the case of commensurability of the natural frequency of the unperturbed system with frequencies of quasi-periodic perturbation, resonance occurs. Averaged systems are derived that make it possible to ascertain the structure of the resonance zone, that is, to describe the behavior of solutions in the neighborhood of individual resonance levels. The study of these systems allows determining possible bifurcations arising when the resonance level deviates from the level of the unperturbed system, which generates a double limit cycle in a perturbed autonomous system. The theoretical results obtained are applied in the study of a two-frequency quasi-periodic perturbed pendulum-type equation and are illustrated by numerical computations.
-
Хаотическое рассеяние точечного вихря круговым цилиндрическим твердым телом, движущимся в поле тяжести, с. 184-196В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.
We consider a system which consists of a circular cylinder subject to gravity interacting with a point vortex in a perfect fluid. In contrast to previous works, in this paper the circulation about the cylinder is assumed to be zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. Using autonomous integral we reduce the order of the system by one degree of freedom in a case of zero circulation which early was not considered. Unlike nonzero circulation in the absence of point vortices when the cylinder moves inside a certain horizontal stripe it is shown that in the presence of vortices and with circulation equal to zero a vertical coordinate of the cylinder is unbounded decreasing. We then focus on the numerical study of dynamics of our system. In a case of zero circulation trajectories are noncompact. The different kinds of the scattering function of the vortex by cylinder were obtained. The form of these functions argues to chaotic behavior of the scattering which means that an additional analytical integral is absent.
-
В данной статье исследуется проблема устойчивости в вариации решений неавтономных дифференциальных уравнений. Представлены некоторые новые достаточные условия асимптотической или экспоненциальной устойчивости для некоторых классов нелинейных нестационарных дифференциальных уравнений, использующие функции Ляпунова, которые не обязательно являются гладкими. Предлагаемый подход для анализа устойчивости основан на определении границ, характеризующих асимптотическую сходимость решений к некоторому замкнутому множеству, содержащему начало координат. Кроме того, приведены некоторые иллюстративные примеры, демонстрирующие справедливость основных результатов.
On the stability in variation of non-autonomous differential equations with perturbations, pp. 222-247In this paper, we investigate the problem of stability in variation of solutions for nonautonomous differential equations. Some new sufficient conditions for the asymptotic or exponential stability for some classes of nonlinear time-varying differential equations are presented by using Lyapunov functions that are not necessarily smooth. The proposed approach for stability analysis is based on the determination of the bounds that characterize the asymptotic convergence of the solutions to a certain closed set containing the origin. Furthermore, some illustrative examples are given to prove the validity of the main results.
-
В данной работе исследуются различные разновидности показателей колеблемости (верхние или нижние, сильные или слабые) нулей, корней, гиперкорней, строгих и нестрогих знаков ненулевых решений линейных однородных дифференциальных систем на положительной полуоси. На множестве ненулевых решений систем установлены соотношения между этими показателями колеблемости. Доказано, что все сильные показатели колеблемости (в отличие от частот Сергеева смен знаков, нулей и корней, а также всех слабых показателей колеблемости), рассматриваемые как функции на множестве решений линейных однородных дифференциальных систем с непрерывными на полуоси коэффициентами, не являются остаточными (т.е. могут меняться при изменении решения на конечном отрезке). Кроме того, при любом наперед заданном натуральном $n\ge2$ приводится пример $n$-мерной дифференциальной системы, у которой все сильные показатели колеблемости некоторого решения не совпадают с соответствующими слабыми показателями. При этом все слабые и все сильные показатели на выбранном решении совпадают соответственно между собой. При доказательстве результатов настоящей работы отдельно рассмотрены случаи четности и нечетности $n$.
дифференциальные уравнения, линейные системы, колеблемость, число нулей, показатели колеблемости, частоты СергееваIn this paper, we study various types of exponents of oscillation (upper or lower, strong or weak) of zeros, roots, hyperroots, strict and non-strict signs of non-zero solutions of linear homogeneous differential systems on the positive semi-axis. On the set of non-zero solutions of autonomous systems the relations between these exponents of oscillation are established. It is proved that all strong exponents of oscillations (unlike Sergeev's frequencies of sign changes, zeros and roots, as well as all the weak exponents of oscillations) considered as functions on the set of solutions to linear homogeneous $n$-dimensional differential systems with continuous coefficients on the semi-line are not residual (i.e. can be changed when changing solution on a finite interval). Besides, at any beforehand given natural $n\ge2$ we give the example of $n$-dimensional differential system, for some solution of which all strong oscillation exponents differ from corresponding weak exponents. In this case, all weak and all strong exponents on the chosen solution coincide with each other, respectively. When proving the results of this work, the case of parity and odd $n$ are considered separately.
-
В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.
Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid, pp. 86-99We consider a system which consists of a circular cylinder subject to gravity interacting with N vortices in a perfect fluid. Generically, the circulation about the cylinder is different from zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. We then focus on the study of a configuration of the Foppl type: a falling cylinder is accompanied with a vortex pair (N=2). Now the circulation about the cylinder is assumed to be zero and the governing equations are considered on a certain invariant manifold. It is shown that, unlike the Foppl configuration, the vortices cannot be in a relative equilibrium. A restricted problem is considered: the cylinder is assumed to be sufficiently massive and thus its falling motion is not affected by the vortices. Both restricted and general problems are studied numerically and remarkable qualitative similarity between the problems is outlined: in most cases, the vortex pair and the cylinder are shown to exhibit scattering.
-
Псевдоспектральный метод для автономных нелинейных дифференциальных уравнений второго порядка, с. 61-72Автономные нелинейные дифференциальные уравнения представляют собой систему обыкновенных дифференциальных уравнений, которые часто применяются в различных областях механики, квантовой физики, химического машиностроения, физики и прикладной математики. Здесь рассматриваются автономные нелинейные дифференциальные уравнения второго порядка ${u}''({x}) - {u}'({x}) = {f}[{u}({x})]$ и ${u}''({x}) + {f}[{u}({x})]{u}'({x}) + {u}({x}) = 0$ на промежутке $[-1, 1]$ с заданными граничными значениями ${u}[-1]$ и ${u}[1]$. Для решения этих задач используется псевдоспектральный метод, основанный на матрице дифференцирования Чебышева с точками Чебышева-Гаусса-Лобатто. Для нахождения приближенных решений построены две новые итерационные процедуры. В этой статье был использован язык программирования Mathematica версии 10.4 для представления алгоритмов, численных результатов и рисунков. В качестве примера численного моделирования исследовано известное уравнение Ван дер Поля и получены хорошие результаты. Впоследствии возможно применение полученных результатов к другим нелинейным системам, таким как уравнения Рэлея, уравнения Льенара и уравнения Эмдена-Фаулера.
псевдоспектральный метод, матрица дифференцирования Чебышева, полином Чебышева, автономные уравнения, нелинейные дифференциальные уравнения, осциллятор Ван-дер-ПоляAutonomous nonlinear differential equations constituted a system of ordinary differential equations, which often applied in different areas of mechanics, quantum physics, chemical engineering science, physical science, and applied mathematics. It is assumed that the second-order autonomous nonlinear differential equations have the types ${u}''({x}) - {u}'({x}) = {f}[{u}({x})]$ and ${u}''({x}) + {f}[{u}({x})]{u}'({x}) + {u}({x}) = 0$ on the range $[-1, 1]$ with the boundary values ${u}[-1]$ and ${u}[1]$ provided. We use the pseudospectral method based on the Chebyshev differentiation matrix with Chebyshev-Gauss-Lobatto points to solve these problems. Moreover, we build two new iterative procedures to find the approximate solutions. In this paper, we use the programming language Mathematica version 10.4 to represent the algorithms, numerical results and figures. In the numerical results, we apply the well-known Van der Pol oscillator equation and gave good results. Therefore, they will be able to be applied to other nonlinear systems such as the Rayleigh equations, the Lienard equations, and the Emden-Fowler equations.
-
О предельных циклах, резонансных и гомоклинических структурах в асимметричном уравнении маятникового типа, с. 228-244Рассматриваются периодические по времени возмущения асимметричного уравнения маятникового типа, близкого к интегрируемому стандартному уравнению математического маятника. Для автономного уравнения решается проблема предельных циклов, которая сводится к исследованию порождающих функций Пуанкаре-Понтрягина. Строится разбиение плоскости параметров на области с разным поведением фазовых кривых. Даются основные фазовые портреты для каждой области полученного разбиения. Для неавтономного уравнения изучается вопрос о структуре резонансных зон, к которому приводит решение задачи о синхронизации колебаний. Вычисляются усредненные уравнения маятникового типа, описывающие поведение решений исходного уравнения в индивидуальных резонансных зонах, и проводится их анализ. Устанавливается глобальное поведение решений в ячейках, не содержащих малых окрестностей невозмущенных сепаратрис. С помощью аналитического метода Мельникова и численного моделирования изучаются основные бифуркации неавтономного уравнения, связанные с возникновением негрубых гомоклинических кривых. На плоскости основных параметров строится бифуркационная диаграмма для отображения Пуанкаре, порожденного исходным уравнением, описывающая различные типы гомоклинических касаний сепаратрис седловой неподвижной точки. Обнаруживаются гомоклинические зоны (те области параметров, для которых существуют гомоклинические траектории к седловой неподвижной точки) с негладкими бифуркационными границами.
On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation, pp. 228-244Time-periodic perturbations of an asymmetric pendulum-type equation close to an integrable standard equation of a mathematical pendulum are considered. For an autonomous equation, the problem of limit cycles, which reduces to the study of the Poincaré-Pontryagin generating functions, is solved. A partition of the parameter plane into domains with different behavior of the phase curves is constructed. Basic phase portraits for each domain of the obtained partition are given. For a nonautonomous equation, the question of the structure of the resonance zones, to which the solution of the problem of synchronization of oscillations leads, is studied. Averaged equations of the pendulum type, describing the behavior of solutions of the original equation in individual resonance zones, are calculated and analyzed. The global behavior of solutions in cells that do not contain small neighborhoods of unperturbed separatrices is ascertained. Using the analytical Melnikov method and numerical modeling, the basic bifurcations of the nonautonomous equation associated with the appearance of nonrough homoclinic curves are studied. On the plane of the main parameters, a bifurcation diagram for the Poincaré map generated by the original equation, describing different types of homoclinic tangencies of the separatrices of the saddle fixed point, is constructed. Homoclinic zones (those domains of parameters for which homoclinic trajectories to the saddle fixed point exist) with nonsmooth bifurcation boundaries are found.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.