Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Изучается задача о малых движениях идеальной стратифицированной жидкости со свободной поверхностью, частично покрытой упругим льдом. Упругий лед моделируется упругой пластиной. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Начальная краевая задача сведена к задаче Коши для дифференциального уравнения второго порядка в некотором гильбертовом пространстве. После подробного изучения свойств операторных коэффициентов, отвечающих возникшей системе уравнений, доказывается теорема о сильной разрешимости полученной задачи Коши на конечном интервале времени. На этой основе доказана также теорема о существовании решения и исходной начально-краевой задачи.
стратифицированная идеальная жидкость, упругий лед, начально-краевая задача, дифференциальное уравнение в гильбертовом пространстве, задача Коши, сильное решениеWe study the problem of small motions of an ideal stratified fluid with a free surface, partially covered with elastic ice. Elastic ice is modeled by an elastic plate. The problem is studied on the basis of an approach connected with application of the so-called operator matrices theory. To this end we introduce Hilbert spaces and some of their subspaces as well as auxiliary boundary value problems. The initial boundary value problem is reduced to the Cauchy problem for the differential second-order equation in Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the strong solvability of the Cauchy problem obtained on a finite time interval. On this basis, we find sufficient conditions for the existence of a strong (with respect to the time variable) solution of the initial-boundary value problem describing the evolution of the hydrosystem.
-
Рассматриваются задачи управления на бесконечном промежутке времени со свободным правым концом. Получены необходимые условия сильной оптимальности. Сам метод доказательства фактически следует классической работе Халкина, а построенное в работе краевое условие на бесконечности является усилением условия, предложенного Сейерстадом. Построенная в работе полная система соотношений принципа максимума позволяет выписать для сопряженной переменной выражение в виде несобственного интеграла, зависящего лишь от разворачивающейся траектории. С.М. Асеев, А.В. Кряжимский, В.М. Вельев получали такое выражение в качестве необходимого условия в некоторых классах задач управления. Сильная оптимальность в ряде случаев позволяет создать переопределенную систему соотношений; в работе получены условия, достаточные для этого. Разобран пример.
задача управления, сильно оптимальное управление, задача на бесконечном промежутке, необходимые условия оптимальности, краевое условие на бесконечности, принцип максимума Понтрягина
On necessary boundary conditions for strongly optimal control in infinite horizon control problems, pp. 49-58In the paper we consider the infinite horizon control problems in the free end case. We obtain the necessary conditions of strong optimality. The method of the proof actually follows the classic paper by Halkin, and the boundary condition for infinity that we construct in our paper is a stronger variety of the Seierstad condition. The complete system of relations of the maximum principle that was obtained in the paper allows us to write the expression for the adjoint variable in the form of improper integral that depends only on the developing trajectory. S.M. Aseev, A.V. Kryazhimskii, and V.M. Veliov obtained the similar condition as a necessary condition for certain classes of control problems. As we note in our paper, the obtained conditions of strong optimality lead us to a redefined system of relations for sufficiently broad class of control problems. An example is considered.
-
Мы исследуем эволюцию осесимметричного двухслойного медленного течения вязкой жидкости со свободной границей, которое создается начальным рельефом границ слоев и скоростями на нижней границе. Каждый слой имеет постоянную плотность и вязкость. Предполагается, что верхний слой имеет меньшую плотность, чем нижний. На основе уравнений Рейнольдса построена система нелинейных параболических уравнений относительно поверхности и границы раздела слоев для описания этого течения. Принимая безразмерный скачок плотностей между слоями как малый параметр, мы применяем метод асимптотических разложений, чтобы выделить главное приближение для медленной эволюции уравнений движения на больших временах. Получено асимптотическое уравнение, связывающее смещения поверхности и границы раздела слоев со скоростями на нижней границе. На основе этого уравнения разработан алгоритм для расчета полей скоростей в слоях на больших временах. Для наглядного представления течения используются линии тока. Численные результаты показали устойчивость линий тока в верхнем слое при вариации скорости на нижней границе. В качестве геофизических приложений разработанный алгоритм используется для количественной оценки поля скоростей в коре под крупномасштабными кольцевыми структурами на Луне (верхний слой), создаваемого глубинными движениями в подстилающей мантии (нижний слой). Чтобы подтвердить достоверность результатов моделирования, мы сопоставляем рассчитанные поля скоростей с системами хребтов кольцевых структур, полученных из экспериментальных наблюдений. Модельное сравнение показало пространственную близость радиусов кольцевых хребтов и особых точек скорости течения на поверхности.
многослойное течение, длинноволновое приближение, уравнения Рейнольдса, нелинейная диффузия, кольцевые структуры
Modeling the velocity field of two-layered creeping flow and some geophysical applications, pp. 66-75We study the long-time evolution of axisymmetric free-surface two-layered creeping flow subject to the initial topography of its boundaries and bottom velocities. Each layer has uniform density and viscosity. The upper layer is assumed to have a smaller density than the lower layer. Based on lubrication approximation (the Reynolds equations) the nonlinear system of diffusion-type equations with respect to the surface and interface between the layers is obtained to describe this flow. Taking the dimensionless density contrast between the layers as a small parameter, we apply the method of asymptotic expansions to extract leading-term approximation for the slowly varying large-time evolution of the governing equations. An asymptotic equation relating both surface and interface displacement to the bottom velocities is derived. Based on this equation, we develop the algorithm to calculate velocity fields within layers for large time. Streamlines are used to visualize the flow. Numerical results reveal stability of the streamlines in the upper layer under variation of the bottom velocity. As geophysical applications, the developed algorithm is used to evaluate the velocity field in the crust (the upper layer) beneath the large-scale lunar multi-ring basins influenced by deep movements in the underlying mantle (the lower layer). To validate the results of modeling, we compare the calculated velocity fields with basin ridge systems obtained by experimental observations. The model comparison has shown proximity of radii of basin rings and critical points of the surface velocity.
-
На закруглениях речного русла формируются вторичные поперечные течения. В зависимости от геометрии русла вторичных течений в створе может быть несколько, и они могут иметь различный масштаб. Даже малое вторичное поперечное течение влияет на параметры гидродинамического потока и это влияние необходимо учитывать при моделировании русловых процессов и исследовании береговых деформаций русла. Трехмерное моделирование таких разномасштабных процессов требует больших вычислительных затрат и на текущий момент возможно только для небольших модельных каналов. Поэтому для исследования береговых процессов в данной работе предложена модель пониженной размерности. Выполненная редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости–вихрь–функция тока. В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данного поля скорости должно быть определено из решения вспомогательных задач или получено из данных натурных или экспериментальных измерений. Для численного решения сформулированной задачи используется метод конечных элементов в формулировке Петрова–Галеркина. В работе получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений с известными экспериментальными данными. Погрешности численных результатов авторы связывают с необходимостью более точного определения радиальной компоненты поля скорости в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и более точного определения граничных условий на свободной границе створа.
At the river bed curves, secondary flow normal to the main flow direction are formed. Depending on the channel geometry, there may be several secondary flows in the cross-section, and they may have different scales. Even a small secondary cross-section flow affects the parameters of the hydrodynamic flow and this influence must be taken into account when modeling riverbed processes and researching coast deformations of the channel. Three-dimensional modeling of such multi-scale processes requires large computational costs and is currently possible only for small model channels. Therefore, a reduced-dimensional model is proposed in this paper to study coastal processes. The performed reduction of the problem from a three-dimensional model of river flow motion to a two-dimensional one in the plane of the channel cross-section assumes that the hydrodynamic flow is quasi-stationary and the hypotheses on the asymptotic behavior of the flow along the flow coordinate are fulfilled for it. Taking into account these limitations, a mathematical model of the problem of a stationary turbulent calm river flow in a channel cross-section is formulated in this work. The problem is formulated in a mixed velocity–vortex–stream function formulation. Specifying of the boundary conditions on the flow free surface for the velocity field determined in the normal and tangential directions to the cross-section axis is required as additional conditions for the problem reduction. It is assumed that the values of this velocity field should be determined from the solution of auxiliary problems or obtained from data of natural or experimental measurements.
The finite element method in the Petrov–Galerkin formulation is used for the numerical solution of the formulated problem. A discrete analog of the problem is obtained and an algorithm for its solution is proposed. The performed numerical studies showed generally good agreement between the obtained solutions and the known experimental data. The authors associate the errors in the numerical results with the need for a more accurate determination of the radial component of the velocity field in the cross-section by selecting and calibrating a more suitable model for turbulent viscosity calculating and a more accurate determination of the boundary conditions on the cross-section free boundary.
-
Приводится постановка нелинейной краевой задачи о распространении волн по свободной поверхности слабовязкой жидкости. Решение задачи находится методом переменной во времени частоты, являющимся обобщением метода Стокса для диссипативных волновых процессов. Найдено асимптотическое решение с точностью третьего приближения по волновому параметру. Показано, что частота и декремент затухания нелинейной волны с течением времени стремятся к значениям, соответствующим линейной задаче. Определены нелинейные траектории жидких частиц, а также выражение переносной скорости Стокса в слабовязкой жидкости.
The statements of nonlinear boundary-value problem for wave propagation over the free surface of lowviscosity fluid have been presented. Solution is found by the method of time-varying frequency, which is the Stokes’ method generalized for the dissipative wave processes. The asymptotic solution up to the third-order approximation upon the wave parameter has been found. It is shown that the frequency and damping rate of the nonlinear wave tend in time to the values corresponding to a linear problem. Nonlinear trajectories of fluid particles and the expression for transfer velocity in a low-viscosity Stokes fluid have been defined.
-
Асимптотическое исследование трехслойного течения вязкой жидкости и некоторые геофизические приложения, с. 107-115Разработана нелинейная модель трехслойного течения со свободной границей на основе упрощенных уравнений вязкой жидкости в длинноволновом приближении. Проведено асимптотическое исследование модели, которое показало существование двух различных режимов эволюции течения на малых и больших временах. Получено уравнение, связывающее смещения границ слоев на больших временах, не зависящее от предыстории течения. Модельные результаты используются для изучения поведения глубинной границы под крупномасштабной кольцевой структурой на Луне в зависимости от изменения геометрических физических параметров модели.
многослойные течения, длинноволновое приближение, теория смазки, нелинейная диффузия, кольцевые структуры.The nonlinear model based on the long-wave approximation of the Navier–Stokes equations is developed to study the free-surface three-layered creeping flow. An asymptotic study of the governing equations reveals two different modes of evolution at a short and long time. The relation between layers’ boundaries is obtained that is independent of a pre-history of the flow. The obtained results are applied to study a behavior of the deep interface beneath the large-scale lunar basin under the variation of geometrical and physical model’s parameters.
-
Рассматривается плоская задача о движении кругового цилиндра с переменным радиусом в идеальной, несжимаемой, тяжелой жидкости. Предполагается, что начальное возмущение жидкости вызвано вертикальным и безотрывным ударом цилиндра, полупогруженного в жидкость. Особенностью этой задачи является то, что при определенных условиях (например, при быстром торможении цилиндра или при быстром уменьшении его радиуса), происходит отрыв жидкости от тела, в результате которого вблизи его поверхности образуются присоединенные каверны. Формы внутренних свободных границ и конфигурация внешней свободной границы заранее неизвестны и подлежат определению в ходе решения задачи. Формулируется нелинейная задача с односторонними ограничениями, на основе которой определяется связность зоны отрыва, а также формы свободных границ жидкости на малых временах. В случае когда давление на внешней свободной поверхности совпадает с давлением в каверне, строится аналитическое решение задачи. Для определения одной из двух симметричных точек отрыва получено трансцендентное уравнение, содержащее полный эллиптический интеграл первого рода и элементарные функции. При кавитационном торможении недеформируемого цилиндра найдена явная формула для внутренней свободной границы жидкости на малых временах. Показано хорошее согласование аналитических результатов с прямыми численными расчетами.
идеальная несжимаемая жидкость, цилиндр с переменным радиусом, удар, кавитационное торможение, свободная граница, точка отрыва, малые времена, число Фруда, число кавитацииThe 2D problem of the movement of a circular cylinder with a variable radius in an ideal, incompressible, heavy fluid is considered. It is assumed that the initial perturbation of the fluid is caused by a vertical and continuous impact of the cylinder semi-submerged in the fluid. The feature of this problem is that under certain conditions (for example, at fast braking of the cylinder or at fast reduction of its radius), there is a separation of the fluid from the body, resulting in the formation of attached cavities near its surface. The forms of the inner free boundaries and the configuration of the external free border are in advance unknown and are subject to definition when the problem is solved. A nonlinear problem with one-sided constraints is formulated, on the basis of which the connectivity of the separation zone and the shape of the free boundaries of the fluid at small times are determined. In the case where the pressure on the external free surface coincides with the pressure in the cavity, an analytical solution of the problem is constructed. To define one of two symmetric points of separation, a transcendental equation containing a full elliptic integral of the first kind and elementary functions is obtained. For the case of cavitational braking of a nondeformable cylinder, an explicit formula for the inner free boundary of the fluid on small times is found. Good agreement of analytical results with direct numerical calculations is shown.
-
Рассматриваются методы моделирования взаимодействия потока несжимаемой жидкости и преграды в рамках эйлерова (метод объема жидкости в ячейке, Volume of Fluid - VOF) и лагранжева (метод гидродинамики сглаженных частиц, Smoothed Particle Hydrodynamics - SPH) описаний. На примере решения задач о движении потока жидкости, вызванного распадом начального уровня жидкости (задача о разрушении плотины), оцениваются преимущества и недостатки применения метода SPH для моделирования гидродинамических нагрузок на преграду, развитой свободной поверхности и каплеобразования. Определяется влияние способа конкретной численной реализации граничных условий Дирихле на твердых стенках на величину давления и характер ее изменения во времени. Численные результаты, полученные с использованием методов VOF и SPH, сопоставляются с известными экспериментальными данными.
математическое моделирование, свободная поверхность, метод гидродинамики сглаженных частиц (Smoothed Particle Hydrodynamics - SPH), метод объема жидкости в ячейке (Volume of Fluid - VOF)
Modeling of the incompressible liquid flow interaction with barriers using VOF and SPH methods, pp. 405-420The paper considers the methods of modeling of the incompressible fluid flow interaction with barriers in Euler formulation (volume of fluid - VOF) and Lagrangian (smoothed particle hydrodynamics - SPH) description. By the example of solving the problems of motion of the fluid flow caused by the collapse of the initial liquid level (dam break problem), the authors estimate advantages and disadvantages of using the SPH method for the simulation of hydrodynamic loads, free-form surface and formation of drops. The influence of the specific numerical implementation of the Dirichlet boundary conditions on solid walls on both the pressure magnitude and its time behavior is determined. Numerical results obtained by the methods of VOF and SPH are compared with known experimental data.
-
О численном моделировании трехмерной конвекции, с. 118-132Рассмотрена задача о трехмерной конвекции жидкости в прямоугольном параллелепипеде со свободными от касательных напряжений изотермическими горизонтальными границами, при подогреве снизу. Предложен специальный спектрально-разностный численный метод расчета, второго порядка аппроксимации по пространству и первого по времени. Проведенный линейный анализ предлагаемого численного метода показал, что численный метод правильно (с хорошим количественным соответствием в длинноволновой части спектра и с качественным - в коротковолновой) передает спектральные характеристики дифференциальной задачи при реальных значениях шагов по времени, пространству и надкритичности. В качестве тестов проведены расчеты двумерной валиковой и турбулентной конвекции Рэлея-Бенара для надкритичности, равной, соответственно, 2.2 и 950 при числе Прандтля, равном 10.
The problem of three-dimensional convection of the liquid in rectangular parallelepiped with stress-free isothermal horizontal boundaries, at heating from below is considered. The special spectral-finite difference method is offered with the second order aproximation on space and the first on time. The linear analysis proposed numerical method has been shown that numerical method has the good quantitative correspondence in long-wave part of spectrum and qualitative_ in short-wave. As test the calculations of two-dimensional roll and three-dimensional turbulent Rayleigh–Benard convection with supercriticality is equal to 2.2 and 950, accordingly are performed with Prandtl number is equal to 10.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.