Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'indicator':
Найдено статей: 17
  1. Классическим свойством периодической функции на вещественной оси является возможность ее представления тригонометрическим рядом Фурье. Естественным аналогом условия периодичности в евклидовом пространстве $\mathbb{R}^m$ является постоянство интегралов от функции по всем шарам (или сферам) фиксированного радиуса. Функции с указанным свойством можно разложить в ряд Фурье по сферическим гармоникам, коэффициенты которого разлагаются в ряды по функциям Бесселя. Этот факт допускает обобщение на векторные поля в $\mathbb{R}^m$, имеющие нулевой поток через сферы фиксированного радиуса. В данной работе изучаются векторные поля с нулевым потоком через окружности фиксированного радиуса на плоскости Лобачевского $\mathbb{H}^2$. Получено описание таких полей в виде рядов по гипергеометрическим функциям. Результаты, полученные в работе, можно использовать при решении задач, связанных с гармоническим анализом векторных полей на областях в $\mathbb{H}^2$.

    A classic property of a periodic function on the real axis is the possibility of its representation by a trigonometric Fourier series. The natural analogue of the periodicity condition in Euclidean space $\mathbb{R}^m$ is the constancy of integrals of a function over all balls (or spheres) of fixed radius. Functions with the indicated property can be expanded in a Fourier series in terms of spherical harmonics whose coefficients are expanded into series in Bessel functions. This fact can be generalized to vector fields in $\mathbb{R}^m$ with zero flux through spheres of fixed radius. In this paper we study vector fields which have zero flux through every circle of fixed radius on the Lobachevskii plane $\mathbb{H}^2$. A description of such fields in the form of series in terms of hypergeometric functions is obtained. These results can be used to solve problems concerning harmonic analysis of vector fields on domains in $\mathbb{H}^2$.

  2. В статье рассматривается задача о приведении движения нелинейной управляемой системы в начало координат при заданном интегральном ресурсе управления на конечном промежутке времени. Исследуется вопрос о построении локального синтеза управления, решающего задачу, в предположении, что промежуток времени, в течение которого осуществляется перевод системы, достаточно мал. Указаны достаточные условия, при выполнении которых задачу можно решить путем приближенной замены нелинейной системы ее линеаризацией в окрестности начала координат.

    The paper considers the problem of leading a nonlinear control system to the origin of coordinates at a given integral control resource on a finite time interval. We investigate the question of the construction of local control synthesis that solves the problem, assuming that the time interval during which the system is moved is sufficiently small. We indicate sufficient conditions under which the problem can be solved by the approximate replacement of the nonlinear system by its linearization in the neighborhood of the origin.

  3. В статье рассматривается метод поиска и анализа текстурных компонент по прямым полюсным фигурам, с учетом симметрии кубического кристалла и образца. Алгоритм основан на представлении плоскостей отражения полярным комплексом векторов. Поиск ориентации происходит путем перемещения оси полярного комплекса по единичной полусфере, с последующим вращением полярного комплекса относительно этой оси. Далее определяется положение стереографических проекций векторов полярного комплекса на дискретной прямой полюсной фигуре. Ориентация считается найденной, если проекции по крайней мере трех векторов полярного комплекса попадают в область с ненулевой интенсивностью. Для каждой ориентации вычисляется вектор Родрига. Кроме того, определяются углы Эйлера и индексы Миллера. Текстурные компоненты выделяются в интерактивном режиме путем кластеризации данных в пространстве Родрига. С помощью ковариационной матрицы определяются собственные значения и векторы, характеризующие пространственное рассеяние текстурных компонент. В работе исследуются полюсные фигуры алюминиевой фольги после различных текстурных преобразований. Найденные текстурные компоненты представлены в пространстве Родрига.

    The article deals with the method of search and analysis of textural components using direct polar figures with due account for the symmetry of a cubic crystal and a sample. The algorithm is based on the representation of reflection planes by a polar complex of vectors. Search of orientation is made by moving the axis of a polar complex over the unit hemisphere followed by the rotation of a polar complex relative to this axis. Then the position of stereographic projections of the polar complex vectors on a discrete direct pole figure is determined. Orientation is found when the projections of at least three polar complex vectors are located in the area with non-zero intensity. For each orientation a Rodrigues vector is calculated. In addition, Euler angles and Miller indices are determined. Textural components are allocated interactively by clustering the data in Rodrigues space. Using the covariance matrix the eigenvalues and eigenvectors are determined characterizing the spatial dispersion of textural components. Pole figures of an aluminum foil after various textural transformations are investigated in the article. Obtained textural components are displayed in Rodrigues space.

  4. В работе рассматриваются динамические биматричные игры с интегральными показателями, дисконтированными на бесконечном интервале времени. Динамика системы задается дифференциальными уравнениями, описывающими изменение поведения игроков в зависимости от поступающих сигналов управления. Рассматривается задача построения равновесных траекторий в рамках минимаксного подхода, предложенного Н.Н. Красовским и А.И. Субботиным в теории дифференциальных игр. Используется конструкция динамического равновесия по Нэшу, которая развита в работах А.Ф. Клейменова. Для синтеза оптимальных стратегий управления применяется принцип максимума Л.С. Понтрягина в сочетании с методом характеристик для уравнений Гамильтона-Якоби. Получены аналитические формулы для кривых переключения оптимальных стратегий управления. Проведен анализ чувствительности равновесных решений в зависимости от параметра дисконтирования в интегральных функционалах выигрыша. Установлена асимптотическая сходимость равновесных траекторий по параметру дисконтирования к решению динамической биматричной игры со среднеинтегральными функционалами выигрыша, которые исследовались в работах В.И. Арнольда. Рассмотрено приложение полученных результатов к динамической модели инвестирования на финансовых рынках.

    The paper is devoted to the analysis of dynamical bimatrix games with integral indices discounted on an infinite time interval. The system dynamics is described by differential equations in which players' behavior changes according to incoming control signals. For this game, a problem of construction of equilibrium trajectories is considered in the framework of minimax approach proposed by N.N. Krasovskii and A.I. Subbotin in the differential games theory. The game solution is based on the structure of dynamical Nash equilibrium developed in papers by A.F. Kleimenov. The maximum principle of L.S. Pontryagin in combination with the method of characteristics for Hamilton-Jacobi equations are applied for the synthesis of optimal control strategies. These methods provide analytical formulas for switching curves of optimal control strategies. The sensitivity analysis for equilibrium solutions is implemented with respect to the discount parameter in the integral payoff functional. It is shown that equilibrium trajectories in the problem with the discounted payoff functional asymptotically converge to the solution of a dynamical bimatrix game with average integral payoff functionals examined in papers by V.I. Arnold. Obtained results are applied to a dynamical model of investments on financial markets.

  5. Строго положительная, непрерывная, неограниченная, возрастающая функция $\gamma(r)$ на полуоси $[0,+\infty)$ называется функцией роста. Пусть функция роста $\gamma(r)$ для некоторого $M>0$ и для всех $r>0$ удовлетворяет условию $\gamma(2r)\leq M\gamma(r)$ . В статье рассматривается пространство $JM(\gamma(r))^o$ мероморфных функций вполне регулярного роста в верхней полуплоскости относительно функции роста $\gamma$. Получен критерий принадлежности мероморфной функции $f$ к пространству $JM(\gamma(r))^o$. Введено определение индикатора функции пространства $JM(\gamma(r))^o$. Доказано, что индикатор принадлежит пространству $\mathbf{L}^p[0,\pi]$ для всех $p>1$.

    A strictly positive continuous unbounded increasing function $\gamma(r)$ on the half-axis $[0,+\infty)$ is called growth function. Let the growth function $\gamma(r)$ satisfies the condition $\gamma(2r)\leq M\gamma(r)$ for some $M>0$ and for all $r>0$. In the paper, the class $JM(\gamma(r))^o$ of meromorphic functions of completely regular growth on the upper half-plane with respect to the growth function $\gamma$ is considered. The criterion for the meromorphic function $f$ to belong to the space $JM(\gamma(r))^o$ is obtained. The definition of the indicator of function from the space $JM(\gamma(r))^o$ is introduced. It is proved that the indicator belongs to the space $\mathbf{L}^p[0,\pi]$ for all $p>1$.

  6. Рассматриваются вопросы, связанные с решением аддитивной задачи последовательного обхода множеств с ограничениями предшествования и функциями стоимости, допускающими зависимость от списка заданий. В качестве базового метода используется широко понимаемое динамическое программирование (ДП), дополняемое в случае задач ощутимой размерности декомпозициями семейства заданий и преобразованием параметров исходной задачи. Возможные применения связаны, в частности, с задачей управления инструментом при фигурной листовой резке деталей на машинах с ЧПУ. В этой задаче важным обстоятельством является учет условий предшествования, имеющих, в частности, следующий смысл: в случае детали с отверстиями резка каждого из внутренних контуров (отвечающих отверстиям) должна предшествовать резке внешнего контура. Сам критерий качества в данной задаче, как правило, является аддитивным. Другой тип ограничений касается избежания термических деформаций деталей. При использовании подхода с применением штрафов за нарушение условий, связанных с эффективным отводом тепла при выполнении врезки, возникают функции стоимости, допускающие зависимость от списка заданий, выполненных на текущий момент времени. Заметим, что в другой прикладной задаче, а именно в задаче о демонтаже радиационно опасных объектов, возникают функции стоимости с зависимостью от списка заданий, не выполненных на данный момент (а, следовательно, касающихся недемонтированных объектов). В итоге мы приходим к очень общей задаче с ограничениями предшествования и функциями стоимости с зависимостью от списка заданий. Применяемая в случае ощутимой размерности декомпозиция с последующей реализацией ДП требует, с одной стороны, разработки методов кластеризации, а, с другой, построения адекватной конструкции распределения глобальных условий предшествования по кластерам. В теоретической части работы обсуждается случай двух кластеров, который позволяет охватить единой схемой целый ряд практически интересных задач диапазонного (в смысле размерности) типа. Указан алгоритм построения композиционного решения, включающий этап обучения кластеризации на основе жадного алгоритма. Данный «композиционный» алгоритм реализован на ПЭВМ; проведен вычислительный эксперимент.

    Issues related to solving the additive problem of sequential traversal of sets with precedence restrictions and cost functions that allow dependence on the list of tasks are considered. The basic method is a broadly understood dynamic programming (DP), supplemented in the case of problems of appreciable dimension by decompositions of the family of tasks and transformation of the parameters of the original problem. Possible applications are related, in particular, to the problem of tool control in figured sheet cutting of parts on CNC machines. In this problem, an important circumstance is taking into account the precedence conditions, which have, in particular, the following meaning: in the case of a part with holes, cutting of each of the internal contours (corresponding to the holes) should precede cutting of the external contour. The quality criterion itself in this problem, as a rule, is additive. Another type of constraints concerns avoiding thermal deformations of parts. When using the approach with penalties for violating the conditions associated with effective heat dissipation during cutting, cost functions arise that allow dependence on the list of tasks completed to date. Note that in another applied problem, namely, in the problem of dismantling radiation hazardous objects, cost functions arise with dependence on the list of tasks that have not been completed at the moment (and, consequently, concern the objects that have not been dismantled). As a result, we arrive at a very general problem with precedence constraints and cost functions with dependence on the list of tasks. The decomposition applied in the case of a noticeable dimensionality with subsequent implementation of the DP requires, on the one hand, the development of clustering methods, and, on the other, the construction of an adequate structure for distributing global precedence conditions among clusters. In the theoretical part of the work, the case of two clusters is discussed, which makes it possible to cover with a single scheme a number of practically interesting problems of a range (in terms of dimensionality) type. An algorithm for constructing a composite solution is indicated, including a stage of clustering training based on a greedy algorithm. This “composite” algorithm is implemented on a PC; a computational experiment was carried out.

  7. Рассматривается модель популяции, подверженной промыслу, в которой размеры промысловых заготовок являются случайными величинами. При отсутствии эксплуатации развитие популяции описывается логистическим уравнением $\dot x =(a-bx)x,$ где коэффициенты $a$ и $b$ являются показателями роста популяции и внутривидовой конкуренции соответственно, а в моменты времени $\tau_k=kd$ из популяции извлекается некоторая случайная доля ресурса $\omega_k,$ $k=1,2,\ldots.$ Предполагаем, что имеется возможность влиять на процесс сбора ресурса таким образом, чтобы остановить заготовку в том случае, когда ее доля окажется достаточно большой (больше некоторого значения $u_k\in (0,1)$ в момент $\tau_k$), чтобы сохранить возможно больший остаток ресурса для увеличения размера следующего сбора. Исследуется задача оптимального способа эксплуатации популяции $\bar u=(u_1,\dots,u_k,\dots),$ при котором добываемый ресурс постоянно восстанавливается и значение средней временной выгоды можно оценить снизу по возможности наибольшим числом. Показано, что при недостаточном ограничении доли добываемого ресурса значение средней временной выгоды может равняться нулю для всех или для почти всех значений случайных параметров. Рассматривается также следующая задача: пусть задано значение $u\in(0,1),$ которым мы ограничиваем случайную долю ресурса $\omega_k,$ добываемого из популяции в моменты времени $\tau_k$, $k=1,2,\ldots.$ Требуется найти минимальное время между соседними изъятиями, необходимое для восстановление ресурса, чтобы можно было производить добычу до тех пор, пока доля извлеченного ресурса не достигнет значения $u$.

    We consider the model of population subject to a craft, in which sizes of the trade preparations are random variables. In the absence of operation the population development is described by the logistic equation $\dot x = (a-bx) x,$ where coefficients $a $ and $b $ are indicators of growth of population and intraspecific competition respectively, and in time moments $ \tau_k=kd$ some random share of a resource $\omega_k,$ $k=1,2, \ldots,$ is taken from population. We assume that there is a possibility to exert influence on the process of resource gathering so that to stop preparation in the case when its share becomes big enough (more than some value $u_k\in (0,1)$ in the moment $\tau_k$) in order to keep the biggest possible rest of a resource and to increase the size of next gathering. We investigate the problem of an optimum way to control population $ \bar u = (u_1, \dots, u_k, \dots)$ at which the extracted resource is constantly renewed and the value of average time profit can be lower estimated by the greatest number whenever possible. It is shown that at insufficient restriction of a share of the extracted resource the value of average time profit can be equaled to zero for all or almost all values of random parameters. We also consider the following problem: let a value $u\in (0,1)$ be given, by which we limit a random share of a resource $ \omega_k, $ extracted from population in time moments $\tau_k,$ $k=1,2, \ldots .$ It is required to find minimum time between neighboring withdrawals, necessary for resource renewal, in order to make it possible to do extractions until the share of the taken resource does not reach the value $u$.

  8. Рассмотрены трехмерные задачи узлов для простой кубической решетки и твердых сфер, находящихся в хаотическом движении. Установлены дополнительные (к двухпоказательному скейлингу) соотношения между индексами: 2-α-γ=ν (или νd-γ=ν) и β=-2α. Определены численные значения трехмерных критических индексов: α=-2/11, η=0, β=4/11, ν=8/11, γ=16/11 и δ=5.

    Three-dimensional lattice points problems for simple cubic lattice and solid spheres in chaotic motion are considered. Additional (to two-exponential scaling) relations between indices are indicated: 2-α-γ=ν (or νd-γ=ν) and β=-2α. Numerical values of three-dimensional critical indices are defined: α=-2/11, η=0, β=4/11, ν=8/11, γ=16/11 and δ=5.

  9. Рассматривается минимаксная задача маршрутизации с элементами декомпозиции. В простейшем случае предполагается, что все множество заданий разбито в сумму двух подмножеств (кластеров), причем выполнение заданий из второго подмножества может быть начато только после завершения всех заданий из первого. Для упомянутой двухкластерной задачи построен алгоритм для нахождения оптимального композиционного решения, включающего маршрут (перестановку индексов заданий) и точку старта, базирующийся на использовании широко понимаемого динамического программирования. На основе данного подхода построен также алгоритм для решения задачи маршрутизации в случае произвольного упорядоченного конечного набора кластеров; алгоритм реализован на ПЭВМ, проведен вычислительный эксперимент. Возможные применения могут быть связаны с некоторыми логистическими задачами в малой авиации, когда требуется обеспечить посещение многих пунктов одним транспортным средством (самолет, вертолет) с ограниченной дальностью беспосадочного полета.

    Chentsov A.G., Chentsov A.A., Chentsov P.A.
    The routing bottlenecks problem (optimization within zones), pp. 267-281

    A minimax routing problem with decomposition elements is considered. In the simplest case, it is supposed that the whole set of tasks is divided into a sum of two subsets (clusters), and execution of tasks from the second subset can be started only after the completion of all tasks from the first subset. For above-mentioned two-cluster problem, an algorithm has been constructed for finding the optimal compositional solution, including a route (permutation of task indices) and a starting point, which is based on the use of a broadly understood dynamic programming. Based on this approach, an algorithm was also constructed to solve the routing problem in the case of an arbitrary ordered finite set of clusters. The algorithm was implemented on a PC, and a computational experiment was carried out. Possible applications may be associated with some logistics tasks in small aviation, when it is necessary to ensure visits to many points by one vehicle (airplane, helicopter) with a limited non-stop flight range.

  10. В работе исследован процесс хаотизации фазового портрета в ограниченной задаче о вращении тяжелого твердого тела с закрепленной точкой. Указаны два дополняющих друг друга механизма хаотизации - рост гомоклинической структуры и развитие каскадов бифуркаций удвоения периода. Отмечено адиабатическое поведение системы на нулевом уровне интеграла площадей при стремлении энергии к нулю. Найдены меандровые торы, связанные с нарушением свойства закручивания рассматриваемого отображения.

    The paper deals with a transition to chaos in the phase-plane portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotisation have been indicated: 1) growth of the homoclinic structure and  2) development of cascades of period doubling bifurcations.  On the zero level of the integral of areas, an adiabatic behavior of the system (as the energy tends to zero) has been noticed. Meander tori induced by the breakdown of the torsion property of the mapping have been found.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref