Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'integral constraints':
Найдено статей: 9
  1. Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.

    A convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.

  2. В статье рассматривается задача о приведении движения нелинейной управляемой системы в начало координат при заданном интегральном ресурсе управления на конечном промежутке времени. Исследуется вопрос о построении локального синтеза управления, решающего задачу, в предположении, что промежуток времени, в течение которого осуществляется перевод системы, достаточно мал. Указаны достаточные условия, при выполнении которых задачу можно решить путем приближенной замены нелинейной системы ее линеаризацией в окрестности начала координат.

    The paper considers the problem of leading a nonlinear control system to the origin of coordinates at a given integral control resource on a finite time interval. We investigate the question of the construction of local control synthesis that solves the problem, assuming that the time interval during which the system is moved is sufficiently small. We indicate sufficient conditions under which the problem can be solved by the approximate replacement of the nonlinear system by its linearization in the neighborhood of the origin.

  3. Исследована выпуклость множеств достижимости по части координат нелинейных систем с интегральными ограничениями на управление на малых промежутках времени. Доказаны достаточные условия выпуклости, имеющие вид ограничений на асимптотику собственных чисел грамиана управляемости линеаризованной системы по части координат. В качестве примеров, в статье описаны две нелинейные системы третьего порядка, в одной из которых линеаризованная вдоль траектории, порожденной нулевым управлением, система неуправляема, а в другом управляема. Исследованы достаточные условия выпуклости проекций множеств достижимости. Проведено численное моделирование, продемонстрировавшее невыпуклость некоторых проекций даже для малых длин временного промежутка.

    We investigate the convexity of the reachable sets for some of the coordinates of nonlinear systems with integral constraints on the control at small time intervals. We have proved sufficient convexity conditions in the form of constraints on the asymptotics of the eigenvalues of the Gramian of the controllability of a linearized system for some of the coordinates. There are two nonlinear third-order systems under study as examples. The system linearized along a trajectory generated by zero control is uncontrollable, and the system in the other example is completely controllable. We investigate the sufficient conditions for convexity of projection of reachable sets. Numerical modeling has been carried out, demonstrating the non-convexity of some projections even for small time intervals.

  4. Изучается дифференциальная игра преследования со многими преследователями и одним убегающим. Игра описывается бесконечной системой $m$ инерционных уравнений. По определению преследование завершается, если состояние одной из систем и его производная равны нулю в некоторый момент времени. В литературе такое условие завершения игры называется мягкой посадкой. В терминах энергий игроков получено условие, которое является достаточным для завершения преследования в игре. Также построены стратегии преследующих, гарантирующие завершение преследования в игре.

    We study a pursuit differential game of many pursuers and one evader. The game is described by the infinite systems of $m$ inertial equations. By definition, pursuit in the game is completed if the state and its derivative of one of the systems are equal to zero at some time. In the literature, such a condition of completion of pursuit is also called soft landing. We obtain a condition in terms of energies of players which is sufficient for completion of pursuit in the game. The pursuit strategies are also constructed.

  5. В данной работе изучаются игровые задачи преследования, описываемые системой уравнений с запаздывающим аргументом при интегральных ограничениях на управления игроков. В предлагаемой схеме используются идеи метода разрешающих функций. Предлагаются модификации методов (то есть первого и так называемого третьего методов) преследования в случае, когда на управления игроков наложены интегральные ограничения. Получены достаточные условия для возможности завершения преследования за конечное время.

    In this paper, we study pursuit game problems described by a system of equations with a retarded argument under integral constraints on the players' controls. The proposed scheme uses the ideas of the method of resolving functions. Modifications of methods (i.e., the first and so-called third methods) [1,3,12] of pursuit are proposed in the case when integral constraints are imposed on the players' controls. Sufficient conditions are obtained for the possibility of completing the pursuit in a finite time.

  6. В статье исследуется дифференциальная игра простого преследования, когда на управления двух противоборствующих игроков накладываются интегральные ограничения обобщенного типа. Обобщенность предлагаемого ограничения заключается в том, что оно включает в себя ранее известные ограничения, такие как интегральные, геометрические, линейные, экспоненциальные и их смешанности. В общем, оно включает в себя 25 типов задач преследования с такими разнотипными ограничениями. Для решения задачи преследования при таких обобщенных ограничениях предлагается стратегия параллельного преследования (сокращенно $\Pi$-стратегия) и находятся достаточные условия разрешимости этой задачи. В конце статьи предлагаются таблицы, где приводятся каждый частный тип игры, условия ее разрешимости, разрешающая функция (определяющая соответствующую $\Pi$-стратегию) и время поимки.

    Samatov B.T., Horilov Mahmud Abdumalikovich M.A., Juraev B.I.
    $\Pi$-strategy for a differential game of pursuit with integral constraints of a generalized type, pp. 292-311

    The paper investigates a differential game of simple pursuit, when the controls of two opposing players are subject to integral constraints of a generalized type. The generalization of the proposed restriction lies in the fact that it includes previously known restrictions such as integral, geometric, linear, exponential and their mixtures. In general, it includes 25 types of pursuit problems with such different types of constraints. To solve the pursuit problem under such generalized constraints, we propose a parallel pursuit strategy ($\Pi$-strategy for short) and find sufficient conditions for the solvability of this problem. At the end of the article, tables are provided that list each particular type of game, the conditions for its solvability, the resolving function (which determines the corresponding $\Pi$-strategy), and the time of capture.

  7. Рассматривается плоская задача о движении кругового цилиндра с переменным радиусом в идеальной, несжимаемой, тяжелой жидкости. Предполагается, что начальное возмущение жидкости вызвано вертикальным и безотрывным ударом цилиндра, полупогруженного в жидкость. Особенностью этой задачи является то, что при определенных условиях (например, при быстром торможении цилиндра или при быстром уменьшении его радиуса), происходит отрыв жидкости от тела, в результате которого вблизи его поверхности образуются присоединенные каверны. Формы внутренних свободных границ и конфигурация внешней свободной границы заранее неизвестны и подлежат определению в ходе решения задачи. Формулируется нелинейная задача с односторонними ограничениями, на основе которой определяется связность зоны отрыва, а также формы свободных границ жидкости на малых временах. В случае когда давление на внешней свободной поверхности совпадает с давлением в каверне, строится аналитическое решение задачи. Для определения одной из двух симметричных точек отрыва получено трансцендентное уравнение, содержащее полный эллиптический интеграл первого рода и элементарные функции. При кавитационном торможении недеформируемого цилиндра найдена явная формула для внутренней свободной границы жидкости на малых временах. Показано хорошее согласование аналитических результатов с прямыми численными расчетами.

    The 2D problem of the movement of a circular cylinder with a variable radius in an ideal, incompressible, heavy fluid is considered. It is assumed that the initial perturbation of the fluid is caused by a vertical and continuous impact of the cylinder semi-submerged in the fluid. The feature of this problem is that under certain conditions (for example, at fast braking of the cylinder or at fast reduction of its radius), there is a separation of the fluid from the body, resulting in the formation of attached cavities near its surface. The forms of the inner free boundaries and the configuration of the external free border are in advance unknown and are subject to definition when the problem is solved. A nonlinear problem with one-sided constraints is formulated, on the basis of which the connectivity of the separation zone and the shape of the free boundaries of the fluid at small times are determined. In the case where the pressure on the external free surface coincides with the pressure in the cavity, an analytical solution of the problem is constructed. To define one of two symmetric points of separation, a transcendental equation containing a full elliptic integral of the first kind and elementary functions is obtained. For the case of cavitational braking of a nondeformable cylinder, an explicit formula for the inner free boundary of the fluid on small times is found. Good agreement of analytical results with direct numerical calculations is shown.

  8. В работе рассмотрены вопросы о гамильтонизации и интегрируемости неголономной задачи Суслова и ее обобщения, предложенного Чаплыгиным. Вопросы важны для понимания качественных особенностей динамики этой системы и, в частности, связаны с нетривиальным асимптотическим поведением (то есть некоторой задачей рассеяния). Статья развивает общий подход авторов, основанный на изучении иерархии динамического поведения неголономных систем.

    We consider the problems of Hamiltonian representation and integrability of the nonholonomic Suslov system and its generalization suggested by S.A. Chaplygin. These aspects are very important for understanding the dynamics and qualitative analysis of the system. In particular, they are related to the nontrivial asymptotic behaviour (i.e. to some scattering problem). The paper presents a general approach based on the study of the hierarchy of dynamical behaviour of nonholonomic systems.

  9. В работе исследуются различные механические системы с неголономными связями. В частности, рассмотрены вопросы существования тензорных инвариантов (законов сохранения) и их связь с поведением системы. Особое внимание уделено возможности представления уравнений движения в конформно-гамильтоновой форме, которая в данной работе используется, главным образом, для интегрирования систем.

    We consider different mechanical systems with nonholonomic constraints; in particular, we examine the existence of tensor invariants (laws of conservation) and their connection with the behavior of a system. Considerable attention is given to the possibility of conformally Hamiltonian representation of the equations of motion, which is mainly used for the integration of the considered systems.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref