Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=Q_0 y(t)+Q_1 y(t-h)$. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты $Q_0$, $Q_1$ обратной связи таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Полученные результаты распространяются на системы с несколькими запаздываниями. Получены следствия о стабилизации системы $(1)$, а также системы вида $(1)$ с несколькими запаздываниями, посредством линейной статической обратной связи по выходу с запаздыванием.
Finite spectrum assignment problem in linear systems with state delay by static output feedback, pp. 463-473We consider a control system defined by a linear time-invariant system of differential equations with delay $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ We construct the controller for the system $(1)$ as linear output feedback $u(t)=Q_0 y(t)+Q_1 y(t-h)$. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain matrices $Q_0$, $Q_1$ such that the characteristic quasipolynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system $(1)$ under which the criterion was found for solvability of the finite spectrum assignment problem. The obtained result extends to systems with several delays. Corollaries on stabilization by linear static output feedback with delay are obtained for system $(1)$ as well as for systems of type $(1)$ with several delays.
-
Рассматривается билинейная управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянный вектор управления таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Критерий выражен в терминах ранговых условий для матриц специального вида. Показана взаимосвязь этих ранговых условий со свойством согласованности усеченной системы без запаздывания. Получены следствия о стабилизации билинейной системы с запаздыванием. Результаты обобщают полученные ранее результаты о назначении спектра для линейных систем со статической обратной связью по выходу с запаздыванием и для билинейных систем без запаздывания. Полученные результаты переносятся на билинейные системы с запаздыванием с дискретным временем. Рассмотрен иллюстрирующий пример.
We consider a bilinear control system defined by a linear time-invariant system of differential equations with delay in the state variable. We study an arbitrary finite spectrum assignment problem by stationary control. One needs to construct constant control vector such that the characteristic quasi-polynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of this finite spectrum assignment problem. This criterion is expressed in terms of rank conditions for matrices of the special form. Interconnection of these rank conditions with the property of consistency for truncated system without delay is shown. Corollaries on stabilization of a bilinear system with delay are obtained. The results extend the previously obtained results on spectrum assignment for linear systems with static output feedback with delay and for bilinear systems without delay. The results obtained are transferred to discrete-time bilinear systems with delay. An illustrative example is considered.
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с сосредоточенными и распределенными запаздываниями по состоянию. Управление в системе строится в виде линейной статической обратной связи по выходу с сосредоточенными и распределенными запаздываниями в тех же узлах. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты обратной связи таким образом, чтобы характеристическая функция замкнутой системы обращалась в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Получены следствия о стабилизации системы с несколькими запаздываниями посредством линейной статической обратной связи по выходу с запаздываниями.
We consider a control system defined by a linear time-invariant system of differential equations with lumped and distributed delays in the state variable. We construct a controller for the system as linear static output feedback with lumped and distributed delays in the same nodes. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain coefficients such that the characteristic function of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of the finite spectrum assignment problem. Corollaries on stabilization by linear static output feedback with several delays are obtained for the closed-loop system.
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с соизмеримыми запаздываниями в состоянии $$ \dot x(t)=Ax(t)+\sum\limits_{j=1}^sA_jx(t-jh)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad \qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=\sum\limits_{\rho =0}^{\theta}Q_\rho y(t-\rho h)$. Исследуется задача назначения произвольного спектра для замкнутой системы: требуется определить число $\theta$ и построить матрицы $Q_{\rho}$, $\rho=0,\ldots,\theta$, обратной связи таким образом, чтобы характеристическая функция замкнутой системы с соизмеримыми запаздываниями обращалась в квазиполином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения произвольного спектра. Получены следствия о стабилизации системы $(1)$ посредством линейной статической обратной связи по выходу с соизмеримыми запаздываниями. Рассмотрен иллюстрирующий пример.
линейные системы с последействием, соизмеримые запаздывания, задача назначения спектра, стабилизация, статическая обратная связь по выходуWe consider a control system defined by a linear time-invariant system of differential equations with commensurate delays in state $$ \dot x(t)=Ax(t)+\sum\limits_{j=1}^sA_jx(t-jh)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad \qquad(1) $$ We construct a controller for the system $(1)$ as linear static output feedback $u(t)=\sum\limits_{\rho =0}^{\theta}Q_\rho y(t-\rho h)$. We study an arbitrary spectrum assignment problem for the closed-loop system. One needs to define a $\theta$ and to construct gain matrices $Q_{\rho}$, $\rho=0,\ldots,\theta$, such that the characteristic function of the closed-loop system with commensurate delays becomes a quasipolynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system $(1)$ under which the criterion is found for solvability of the problem of arbitrary spectrum assignment. Corollaries on stabilization by linear static output feedback with commensurate delays are obtained for the system $(1)$. An illustrative example is considered.
-
Рассматривается билинейная управляемая система, заданная линейной стационарной дифференциальной системой с несколькими несоизмеримыми запаздываниями в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянные векторы управления таким образом, чтобы характеристическая функция замкнутой системы равнялась многочлену с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Показана взаимосвязь условий критерия со свойством согласованности усеченной системы без запаздываний. Получены следствия о стабилизации билинейных систем с запаздываниями. Аналогичные результаты получены для билинейных системы с несколькими запаздываниями с дискретным временем. Рассмотрен иллюстрирующий пример.
A bilinear control system defined by a linear stationary differential system with several non-commensurate delays in the state variable is considered. A problem of finite spectrum assignment by constant control is studied. One needs to construct constant control vectors such that the characteristic function of the closed-loop system is equal to a polynomial with arbitrary given coefficients. Conditions on coefficients of the system are obtained under which the criterion was found for solvability of the finite spectrum assignment problem. Interconnection of the criterion conditions with the property of consistency for the truncated system without delays is shown. Corollaries on stabilization of bilinear systems with delays are obtained. The similar results are obtained for discrete-time bilinear systems with several delays. An illustrative example is considered.
-
В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с непрерывным и дискретным временем и дискретной памятью. В рамках этого класса предлагается явное представление для основных составляющих представления общего решения — фундаментальной матрицы и оператора Коши. Полученные представления даются в терминах параметров рассматриваемой системы и открывают возможность эффективного исследования общих краевых задач и задач управления относительно заданной конечной системы линейных целевых функционалов. При исследовании упомянутых задач для систем за пределами изучаемого класса рассматриваемые в работе системы с дискретной памятью могут играть роль модельных или аппроксимирующих систем и оказаться полезными при изучении грубых свойств систем с последействием, сохраняющихся при малых возмущениях параметров.
линейные системы с последействием, непрерывно-дискретные функционально-дифференциальные системы, представление решений, оператор КошиA class of linear functional differential systems with continuous and discrete times and discrete memory is considered. An explicit representation of the principal components to the general solution representation such as the fundamental matrix and the Cauchy operator is derived. The obtained representation is given in terms of the system parameters and opens a way towards efficient studying general linear boundary value problems and control problems with respect to a fixed collection of linear on-target functionals. In the study of the problems mentioned above outside the class under consideration, the systems with discrete memory can be employed as model or approximating ones. This can be useful as applied to systems with aftereffect under studying rough properties that hold under small perturbations of the parameters.
-
Успокоение решения систем нейтрального типа с многими запаздываниями посредством обратной связи, с. 40-51В работе изучена следующая задача: для линейной автономной дифференциально-разностной системы нейтрального типа с запаздыванием в состоянии требуется обеспечить ее полное успокоение с помощью обратной связью. Для решения указанной задачи предложен линейный автономный динамический дифференциально-разностный регулятор типа обратной связи по состоянию, не выводящий замкнутую систему из исходного класса линейных автономных систем нейтрального типа. Достаточное условие существования такого регулятора совпадает с критерием полной управляемости. Кроме того, замкнутая система будет иметь конечный спектр, что существенно упрощает задачу вычисления текущего состояния в ходе технической реализации регулятора. Основная идея исследования заключается в выборе параметров регулятора так, чтобы замкнутая система стала точечно вырожденной в направлениях, отвечающих фазовым компонентам исходной (разомкнутой) системы. Для этого на начальном этапе исходная система обратной связью приводится к системе запаздывающего типа с одним входом. Далее для полученного объекта строится динамический регулятор, обеспечивающий вырождение соответствующих фазовых компонент.
Предложенная процедура построения управляющего воздействия базируется на алгебраических свойствах оператора сдвига и не предполагает вычисления корней характеристического квазиполинома исходной системы. Возможно ее использование для обеспечения замкнутой системе не только полного успокоения, но и экспоненциальной устойчивости. Однако в последнем случае возникает необходимость использовать динамические регуляторы с обратной связью по состоянию интегрального типа.
дифференциально-разностная система, нейтральный тип, полная управляемость, регулятор, обратная связь, точечная вырожденностьThis paper examines the following problem: a linear autonomous differential-difference system of neutral type with delay in state requires ensuring its complete calming by feedback. To solve this problem linear autonomous dynamic differential-difference controller with state feedback is proposed; this controller does not exclude a closed system from the original class of linear autonomous systems of neutral type. Sufficient condition for the existence of such a controller coincides with the criterion of complete controllability. In addition, the closed system has a finite spectrum, which simplifies greatly the problem of calculating the current state during the technical implementation of the controller. The basic idea of research is to select parameters for the controller so that the closed system becomes point-degenerated in directions corresponding to phase components of the original (open) system. To do this, the original system is first converted via feedback to the single-input system of retarded type. Further, for the resulting object the dynamic controller that provides the degeneracy of the corresponding phase components is constructed.
The proposed procedure for constructing the control action is based on the algebraic properties of shift operator and does not involve calculating the roots of characteristic quasipolynomial of the original system. It can be used to provide full calming as well as exponential stability to a closed system. However, in the latter case it is necessary to use dynamic controller with state feedback of integral type.
-
В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с последействием, непрерывным и дискретным временем и импульсными воздействиями (импульсные гибридные ФДУ). В центре внимания находятся конструкции операторов, позволяющих дать полное описание всех траекторий гибридной системы, и в терминах этих операторов формулировать условия разрешимости задач управления с выбором управлений из различных классов, давать описание (оценки) множеств достижимости при наличии ограничений на управление, а также получать условия разрешимости общих линейных краевых задач. Дается детальное описание всех компонент оператора Коши, изучаются их свойства. Для компонент с непрерывным временем получены условия их непрерывности по второму аргументу, влияющие на возможность выбора класса управляющих воздействий. Упомянутые конструкции систематически используют результаты о матрицах Коши систем ФДУ с непрерывным временем и систем разностных уравнений с дискретным временем.
линейные системы с последействием, непрерывно-дискретные функционально-дифференциальные системы, представление решений, оператор КошиIn this paper, a class of linear functional differential systems with aftereffect, continuous and discrete times, and impulses (impulse hybrid systems) is considered. The focus of attention is on the structure of the Cauchy operator to the hybrid system under consideration and the representation of their components. Those allow one to give the representation of all trajectories of the hybrid system and to formulate conditions of the solvability for control problems in various classes of controls, to obtain estimates of the attainability sets under constrained control, and to study general linear boundary value problems for the solvability. A detailed description of all components to the Cauchy operator is given and their properties are studied. For the components with continuous time, some conditions of the continuity with respect to the second argument are obtained which is related to deciding on a class of controls. The main results are based on constructions of the Cauchy matrices to systems with continuous time and difference systems.
-
О многомерных точных решениях уравнения нелинейной диффузии типа пантографа с переменным запаздыванием, с. 359-374Рассматривается многомерное уравнение нелинейной диффузии типа пантографа с линейно растущим запаздыванием по времени и масштабированием по пространственным переменным в источнике (стоке). Предложено строить точные решения методом редукции с использованием двух анзацев с квадратичной зависимостью от пространственных переменных. Зависимость решения от пространственных переменных находится из системы алгебраических уравнений, а зависимость от времени находится из системы обыкновенных дифференциальных уравнений с линейно растущим запаздыванием аргумента. Приводится ряд примеров точных решений, как радиально симметричных, так и анизотропных по пространственным переменным.
уравнение нелинейной диффузии типа пантографа, растущее запаздывание по времени, масштабирование по пространственным переменным, редукция, точные решения
On multidimensional exact solutions of the nonlinear diffusion equation of the pantograph type with variable delay, pp. 359-374We consider a multidimensional pantograph-type nonlinear diffusion equation with a linearly increasing time delay and scaling with respect to spatial variables in the source (sink). It is proposed to construct exact solutions by the reduction method using two ansatzes with a quadratic dependence on spatial variables. The dependence of the solution on spatial variables is found from a system of algebraic equations, and the dependence on time is found from a system of ordinary differential equations with a linearly increasing delay of the argument. A number of examples of exact solutions are given, both radially symmetric and anisotropic with respect to spatial variables.
-
Об устойчивости линейных систем с импульсным воздействием в матрице системы и запаздыванием, с. 40-46Работа посвящена исследованию свойств асимптотической устойчивости решений линейной системы дифференциальных уравнений с обобщенным воздействием в матрице системы и запаздыванием в фазовых координатах.
The article devoted to the study of asymptotic stability properties of solutions of linear system of differential equations with generalized action in the matrix system and delay in the phase coordinates.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.