Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'motion of a rigid body':
Найдено статей: 21
  1. В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.

    We consider a system which consists of a circular cylinder subject to gravity interacting with a point vortex in a perfect fluid. In contrast to previous works, in this paper the circulation about the cylinder is assumed to be zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. Using autonomous integral we reduce the order of the system by one degree of freedom in a case of zero circulation which early was not considered. Unlike nonzero circulation in the absence of point vortices when the cylinder moves inside a certain horizontal stripe it is shown that in the presence of vortices and with circulation equal to zero a vertical coordinate of the cylinder is unbounded decreasing. We then focus on the numerical study of dynamics of our system. In a case of zero circulation trajectories are noncompact. The different kinds of the scattering function of the vortex by cylinder were obtained. The form of these functions argues to chaotic behavior of the scattering which means that an additional analytical integral is absent.

  2. Караваев А.С., Копысов С.П., Сармакеева А.С.
    Моделирование динамики произвольных тел методом дискретных элементов, с. 473-482

    Рассматриваются постановка и тестовые решения задачи динамического взаимодействия твердых тел произвольной формы в рамках дискретно-элементного моделирования. При дискретизации используется описание тел произвольной формы, составленных из элементов-сфер, жестко связанных между собой. Агломераты строились на нескольких сетках с разной размерностью, что позволило оценить влияние параметров при построении агломератов сфер и гладкости получаемой поверхности. Представлена система уравнений движения агломерата сфер относительно глобальной системы координат, интегрирование которой выполняется на модифицированной схеме Верле. Силы взаимодействия между сферами определяются на основе контактной модели Герца-Миндлина с учетом вязкого демпфирования. Тестирование метода проводилось на задаче взаимодействия двух сфер. Вычислялись траектории движения сфер, представленные агломератом сферических частиц. Полученные результаты сравнивались со случаем движения и взаимодействия сфер в одночастичном приближении.

    Karavaev A.S., Kopysov S.P., Sarmakeeva A.S.
    A discrete element method for dynamic simulation of arbitrary bodies, pp. 473-482

    The paper deals with the statement of a problem of dynamic interaction of arbitrary solid bodies and its test solutions in the context of discrete element modeling. For discretization we use description of bodies with arbitrary shapes, composed of rigidly bound spheres. The clumps were built with different characteristics, which allowed to estimate their influence on the process of clump construction and the smoothness of obtained surface. A system of equations of motion relative to global axes for a clump of spheres is presented. The forces of interaction between the spheres are determined based on the Hertz-Mindlin contact model with due account for viscous damping. A problem of interaction of two spheres was chosen as a test case. Spheres' trajectories composed of clumps of spheres were calculated. The results were compared with the results for the case of motion and interaction of spheres in one-particle approximation.

  3. В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.

    In this paper we consider an integrable Hamiltonian system on the Lie algebra $so(4)$ with an additional integral of the fourth degree - the Adler-van Moerbeke integrable case. We discuss classical works which explore, on the one hand, the dynamics of a rigid body with cavities completely filled with an ideal fluid performing a homogeneous vortex motion and, on the other hand, are devoted to the study of geodesic flows of left-invariant metrics on Lie groups. The equations of motion, the Hamiltonian function, Lie-Poisson brackets, Casimir functions and the phase space of the case under consideration are given. In previous papers, the investigation of the phase topology of the integrable Adler-van Moerbeke case was started: a spectral curve, a discriminant set and a bifurcation diagram of the moment map are explicitly shown, and characteristic exponents for determining the type of critical points of rank 0 and 1 of the moment map are presented. In this paper we present an algorithm for constructing Liouville tori. Examples are given of bifurcations of Liouville tori at the intersection of bifurcation curves for reconstructions of one torus into two tori and of two tori into two tori.

  4. В работе исследован процесс хаотизации фазового портрета в ограниченной задаче о вращении тяжелого твердого тела с закрепленной точкой. Указаны два дополняющих друг друга механизма хаотизации - рост гомоклинической структуры и развитие каскадов бифуркаций удвоения периода. Отмечено адиабатическое поведение системы на нулевом уровне интеграла площадей при стремлении энергии к нулю. Найдены меандровые торы, связанные с нарушением свойства закручивания рассматриваемого отображения.

    The paper deals with a transition to chaos in the phase-plane portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotisation have been indicated: 1) growth of the homoclinic structure and  2) development of cascades of period doubling bifurcations.  On the zero level of the integral of areas, an adiabatic behavior of the system (as the energy tends to zero) has been noticed. Meander tori induced by the breakdown of the torsion property of the mapping have been found.

  5. В статье рассмотрена редукция уравнений Кирхгофа-Пуассона задачи о движении твердого тела под действием потенциальных и гироскопических сил и уравнений задачи о движении твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона. Получены аналоги уравнений Н. Ковалевского в указанных задачах. Построены два новых частных решения полиномиального класса Стеклова-Ковалевского-Горячева редуцированных дифференциальных уравнений рассматриваемых задач. Полиномиальное решение задачи о движении гиростата под действием потенциальных и гироскопических сил характеризуется свойством: квадраты второй и третьей компонент вектора угловой скорости представлены квадратными многочленами от первой компоненты этого вектора, которая является эллиптической функцией времени. Полиномиальное решение уравнений движения твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона характеризуется тем, что квадрат второй компоненты вектора угловой скорости - многочлен второго порядка, а квадрат третьей компоненты - многочлен четвертого порядка от первой компоненты этого вектора, которая находится в результате обращения гиперэллиптического интеграла.

    In this paper we consider the reduction of Kirchhoff-Poisson equations related to the problem of rigid body motion under the action of potential and gyroscopic forces and also equations of the problem of rigid body motion taking into account the Barnett-London effect. For the above-mentioned problems, we obtain analogues of N. Kovalevski equations. In addition, for the above-mentioned problems we obtain two new particular solutions to the polynomial class of Steklov-Kovalevski-Goryachev reduced differential equations. The polynomial solution of the problem of gyrostat motion under the action of potential and gyroscopic forces is characterized by the following property: the squares of the second and the third vector component of angular velocity are quadratic polynomials of the first vector component that is an elliptic function of time. A polynomial solution of the equation of rigid body motion in a magnetic field (taking into account the Barnett-London effect) is characterized by the fact that the square of the second vector component of the angular velocity is the second-degree polynomial, while the square of the third component is the fourth-degree polynomial of the first vector component. The former is found as a result of an elliptic integral inversion.

  6. В статье рассмотрены основные принципы постановок задач в механике твердого тела при наличии связей (с сухим трением и без). Основное внимание уделено предыстории начальных условий задачи, которая должна быть корректно определена таким образом, чтобы не требовалось введения дополнительных гипотез и допущений, выводящих исследование за рамки динамики твердого тела без ударов. Тогда динамика движения (и/или равновесия) твердых тел может быть описана однозначно и без каких-либо парадоксальных ситуаций (парадоксов Пэнлеве). Эта методика иллюстрируется на трех известных задачах механики: опирание твердого тела на одну точку при наличии сухого трения, движение стержня с ползунами в направляющих с сухим трением, опирание твердого тела на две точки с сухим трением («скамейка»).

    We consider basic concepts for setting the problems of motion of a rigid body with constraints (with and without dry friction). The main accent is placed upon the prehistory of initial condition of a problems, which should be formulated in a correct manner which would not require introducing additional hypothesis and assumptions which make one to leave the frames of the rigid body dynamics without impacts. With such correct formulation, the dynamics of motion (or equilibrium) of rigid bodies can be described without occurence of some paradoxic situations (Painlev'e paradoxes). The presented methodology is illustrated by three well-known problems in mechanics: 1) rigid body with a single contact point with a surface in the presence of dry friction, 2) sliding bar in the sliding ways with dry friction, 3) rigid body with two point contact in the presence of dry friction («bench»).

  7. Неголономные механические системы возникают во многих задачах, имеющих практическое значение. Известной моделью в неголономной механике являются сани Чаплыгина. Сани Чаплыгина представляют собой твердое тело, опирающееся на поверхность острым невесомым колесом. Острый край колеса препятствует скольжению в направлении, перпендикулярном его плоскости. В данной работе рассмотрены сани Чаплыгина с изменяющимся со временем распределением масс, которое возникает за счет движения точки в поперечном относительно плоскости лезвия направлении. Получены уравнения движения, среди которых отделяется замкнутая система уравнений с периодическими по времени коэффициентами, описывающая эволюцию поступательной и угловой скорости саней. Показано, что если проекция центра масс всей системы на ось вдоль лезвия равна нулю, тогда поступательная скорость саней возрастает. При этом траектория точки контакта, как правило, является неограниченной.

    Nonholonomic mechanical systems arise in the context of many problems of practical significance. A famous model in nonholonomic mechanics is the Chaplygin sleigh. The Chaplygin sleigh is a rigid body with a sharp weightless wheel in contact with the (supporting) surface. The sharp edge of the wheel prevents the wheel from sliding in the direction perpendicular to its plane. This paper is concerned with a Chaplygin sleigh with time-varying mass distribution, which arises due to the motion of a point in the direction transverse to the plane of the knife edge. Equations of motion are obtained from which a closed system of equations with time-periodic coefficients decouples. This system governs the evolution of the translational and angular velocities of the sleigh. It is shown that if the projection of the center of mass of the whole system onto the axis along the knife edge is zero, the translational velocity of the sleigh increases. The trajectory of the point of contact is, as a rule, unbounded.

  8. Рассматривается движение близкой к автономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Пусть значения параметров задачи таковы, что в системе реализуется одновременно двойной комбинационный резонанс третьего порядка и резонанс четвертого порядка. Решается вопрос о существовании и устойчивости резонансных периодических решений системы. Исследование проводится на примере задачи о движении динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите. В качестве невозмущенных рассматриваются периодические движения спутника, рождающиеся из его стационарных вращений на круговой орбите (гиперболоидальной и конической прецессий), для резонансных значений параметров. Проведена нормализация гамильтонианов возмущенного движения, определены положения равновесия приближенных (модельных) систем, методом Пуанкаре построены соответствующие резонансные периодические движения спутника в окрестности указанных невозмущенных движений, дана их геометрическая интерпретация. Выявлены неустойчивые периодические движения, а также движения, являющиеся устойчивыми для большинства (в смысле меры Лебега) начальных условий и формально устойчивыми.

    The motion of a near-autonomous time-periodic two-degree-of-freedom Hamiltonian system in the vicinity of a linearly stable trivial equilibrium is considered. The values of the problem parameters are supposed to be such that the system implements both a double combinational third-order resonance and a fourth-order resonance. The problem of existence and stability of resonant periodic motions of the system is considered. The study is carried out using as an example the problem of the motion of a dynamically symmetric satellite (a rigid body) relative to the center of mass in the central Newtonian gravitational field in an elliptical orbit with small eccentricity. The satellite's periodic motions generated from its stationary rotations in a circular orbit (hyperboloidal and conical precessions) for the resonant values of the parameters are considered as unperturbed ones. The normalization of the Hamiltonian functions of perturbed motion is performed, and the equilibrium positions of approximate (model) systems are determined. The corresponding resonant periodic motions of the satellite in the vicinity of these unperturbed motions are obtained by the Poincare method, and their geometric interpretation is given. The unstable periodic motions and the motions that are stable for the majority (in the sense of Lebesgue measure) of the initial conditions and formally stable are revealed.

  9. Исследуется эволюция угла наклона оси вращения планеты в поле притяжения звезды и внешних планет, входящих в планетную систему. Считаем, что исследуемая планета является динамически-симметричным твердым телом $(A = B)$. Полагаем также, что сама планета и внешние планеты движутся по кеплеровским эллипсам вокруг звезды со средними движениями $\omega$ и $\omega_2,\ldots ,\omega_N$, где $N$ - число небесных тел, воздействующих на планету. В переменных Депри-Андуайе получена функция Гамильтона задачи в рамках спутникова приближения. Проведено осреднение функции Гамильтона по быстрым переменным вращательного и орбитального движений при условии отсутствия резонансов между быстрыми частотами указанных движений. Показано, что осредненная функция Гамильтона содержит, помимо классических параметров, параметры $D_i$, являющиеся функционалами на семействе орбит исследуемой планеты и внешних планет. Показано, что осредненная функция Гамильтона допускает разделение переменных и, как следствие, существует три первых интеграла в инволюции. При рассмотрении гравитационных моментов от внешних планет как малых возмущений, получены, с помощью интеграла энергии осредненных уравнений, явные приближенные формулы для угла нутации исследуемой планеты. Получены также приближенные формулы для возмущенного периода прецессии планеты. Проведены расчеты размаха колебаний по углу нутации планеты, возмущенного периода ее прецессии для частного случая планетной системы, состоящей из звезды, самой планеты и массивной внешней планеты (подобной Юпитеру) с симметрично расположенными орбитами, плоскости которых пересекаются под углом $\gamma$.

    We investigate the evolution of the obliquity of a planet in the gravitational field of a star and other planets comprising a planetary system. The planet is assumed to be an axially symmetric rigid body ($A=B$). This planet and other planets move around the star along Keplerian ellipses with frequencies $\omega$ and $\omega_2,\ldots,\omega_N$, respectively, where $N$ is the number of celestial bodies (material points) affecting the planet. We derive Hamiltonian for the problem in the Depri-Andoyer variables in the satellite approximation. The Hamiltonian is averaged over the fast variables of the rotational and orbital motions, assuming that the motions are not resonant. The averaged Hamiltonian involves, in addition to the classic parameters, parameters $D_i$, that can be considered as functionals on the family of orbits of celestial bodies comprising the planetary system. The averaged Hamiltonian admits separation of variables, which implies the existence of three first integrals in involution. Regarding the gravitational torques of the other planets as small perturbations, we obtain from the energy integral of the averaged equations explicit approximate expressions for obliquity of the planet and its perturbed period of precession. We investigate numerically the amplitude of oscillations of the planet's obliquity and it's perturbed period of precession for a planetary system involving a star, the planet itself and another massive planet (similar to Jupiter), whose orbits satisfy certain symmetry conditions and orbital planes intersect at angle $\gamma$.

  10. Рассматривается плоское движение твердого тела в однородном поле тяжести. Тело подвешено на невесомой нерастяжимой нити. Предполагается, что во все время движения тела нить остается натянутой. Изучены нелинейные периодические колебания тела в окрестности его устойчивого положения равновесия на вертикали. Эти движения рождаются из малых (линейных) нормальных колебаний тела. Вопрос о существовании таких движений решается при помощи теоремы Ляпунова о голоморфном интеграле. Указан алгоритм построения этих движений при помощи метода канонических преобразований. Соответствующие решения представимы в виде рядов по малому параметру, характеризующему амплитуду порождающих нормальных колебаний. Дано строгое решение нелинейной задачи об орбитальной устойчивости построенных движений. Указаны возможные области параметрического резонанса (области неустойчивости), рассмотрены случаи резонансов третьего и четвертого порядков, а также нерезонансный случай. Исследование опирается на методы Ляпунова и Пуанкаре и КАМ-теорию.

    The planar motion of a rigid body in a uniform gravity field is considered. The body is suspended on a weightless inextensible thread. The thread is assumed to remain taut during the motion of the body. Nonlinear periodic oscillations of the body in the vicinity of its stable equilibrium position on the vertical are studied. These motions are generated by small (linear) normal body vibrations. The question of the existence of such motions is solved with the Lyapunov theorem on a holomorphic integral. An algorithm for constructing these motions using the canonical transformation method is proposed. The corresponding solutions are represented in the form of series in a small parameter characterizing the amplitude of the generating normal oscillations. A rigorous solution is given to the nonlinear problem of orbital stability of the motions obtained. Possible regions of parametric resonance (instability regions) are indicated. The third and fourth order resonance cases, as well as a nonresonant case, are considered. The study is based on the Lyapunov and Poincaré methods and KAM-theory.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref