Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'nonholonomic system':
Найдено статей: 10
  1. Борисов А.В., Луценко С.Г., Мамаев И.С.
    Динамика колесного экипажа на плоскости, с. 39-48

    В работе рассматривается задача о движении колесного экипажа на плоскости в случае, когда одна из колесных пар фиксирована, а также случай движения колесного экипажа на плоскости в случае двух свободных колесных пар. Указан способ получения уравнений движения для экипажа с произвольной геометрией. Определены возможные виды движения экипажа с фиксированной колесной парой.

    Borisov A.V., Lutsenko S.G., Mamaev I.S.
    Dynamics of a wheeled carriage on a plane, pp. 39-48

    The paper deals with the problem of motion of a wheeled carriage on a plane in the case where one of the wheeled pairs is fixed. In addition, the case of motion of a wheeled carriage on a plane in the case of two free wheeled pairs is considered.

  2. В работе исследуется динамика диска, катящегося по абсолютно шероховатой плоскости. Доказано, что уравнения движения обладают инвариантной мерой с непрерывной плотностью только в двух случаях: при динамически симметричном диске и диске со специальным распределением масс. В первом случае уравнения движения обладают двумя дополнительными интегралами и являются интегрируемыми в квадратурах по теореме Эйлера-Якоби. Во втором случае с помощью отображения Пуанкаре показано отсутствие дополнительных интегралов. В обоих случаях для любой области фазового пространства, переносимой потоком системы, ее объем, вычисленный с помощью плотности инвариантной меры, сохраняется. В неголономной механике известны как системы, допускающие инвариантную меру, так и системы, у которых она отсутствует.

    This paper addresses the dynamics of a disk rolling on an absolutely rough plane. It is proved that the equations of motion have an invariant measure with continuous density only in two cases: a dynamically symmetric disk and a disk with a special mass distribution. In the former case, the equations of motion possess two additional integrals and are integrable by quadratures by the Euler-Jacobi theorem. In the latter case, the absence of additional integrals is shown using a Poincaré map. In both cases, the volume of any domain in phase space (calculated with the help of the density) is preserved by the phase flow. Nonholonomic mechanics is populated with systems both with and without an invariant measure.

  3. Неголономные механические системы возникают во многих задачах, имеющих практическое значение. Известной моделью в неголономной механике являются сани Чаплыгина. Сани Чаплыгина представляют собой твердое тело, опирающееся на поверхность острым невесомым колесом. Острый край колеса препятствует скольжению в направлении, перпендикулярном его плоскости. В данной работе рассмотрены сани Чаплыгина с изменяющимся со временем распределением масс, которое возникает за счет движения точки в поперечном относительно плоскости лезвия направлении. Получены уравнения движения, среди которых отделяется замкнутая система уравнений с периодическими по времени коэффициентами, описывающая эволюцию поступательной и угловой скорости саней. Показано, что если проекция центра масс всей системы на ось вдоль лезвия равна нулю, тогда поступательная скорость саней возрастает. При этом траектория точки контакта, как правило, является неограниченной.

    Nonholonomic mechanical systems arise in the context of many problems of practical significance. A famous model in nonholonomic mechanics is the Chaplygin sleigh. The Chaplygin sleigh is a rigid body with a sharp weightless wheel in contact with the (supporting) surface. The sharp edge of the wheel prevents the wheel from sliding in the direction perpendicular to its plane. This paper is concerned with a Chaplygin sleigh with time-varying mass distribution, which arises due to the motion of a point in the direction transverse to the plane of the knife edge. Equations of motion are obtained from which a closed system of equations with time-periodic coefficients decouples. This system governs the evolution of the translational and angular velocities of the sleigh. It is shown that if the projection of the center of mass of the whole system onto the axis along the knife edge is zero, the translational velocity of the sleigh increases. The trajectory of the point of contact is, as a rule, unbounded.

  4. В данной работе исследуется задача о качении роллер-рейсера по колеблющейся плоскости. Получены уравнения движения роллер-рейсера в виде системы четырех неавтономных дифференциальных уравнений. Указаны два семейства частных решений, которые соответствуют прямолинейным движениям роллер-рейсера вдоль и перпендикулярно колебаниям плоскости. Приведены численные оценки мультипликаторов решений, соответствующих движению робота вдоль колебаний. Также указан частный случай, в котором удается получить аналитические выражения мультипликаторов. В этом случае показано, что в линейном приближении движение вдоль колебаний «свернутого» роллер-рейсера орбитально устойчиво при движении шарниром вперед, а все остальные движения неустойчивы. Показано, что в линейном приближении семейство, соответствующее движению робота, перпендикулярно колебаниям плоскости — неустойчиво.

    This paper addresses the problem of a roller-racer rolling on an oscillating plane. Equations of motion of the roller-racer in the form of a system of four nonautonomous differential equations are obtained. Two families of particular solutions are found which correspond to rectilinear motions of the roller-racer along and perpendicular to the plane's oscillations. Numerical estimates are given for the multipliers of solutions corresponding to the motion of the robot along the oscillations. Also, a special case is presented in which it is possible to obtain analytic expressions of the multipliers. In this case, it is shown that the motion along oscillations of a “folded” roller-racer is linearly orbitally stable as it moves with its joint ahead, and that all other motions are unstable. It is shown that, in a linear approximation, the family corresponding to the motion of the robot is perpendicular to the plane's oscillations, that is, it is unstable.

  5. Луценко С.Г.
    Динамика колесного экипажа, с. 87-94

    В работе рассматривается задача о движении колесного экипажа на плоскости в случае, когда одна из колесных пар фиксирована, а также случай движения колесного экипажа на плоскости в случае двух свободных колесных пар.

    Lutsenko S.G.
    Dynamics of a wheeled carriage, pp. 87-94

    The paper deals with the problem of motion of a wheeled carriage on a plane in case one of the wheeled couples is fixed. It also considers the case of motion of a wheeled carriage on a plane in the case of two free wheeled couples.

  6. Рассматривается качение неуравновешенного динамически симметричного шара по плоскости без проскальзывания в присутствии внешнего магнитного поля. Предполагается, что шар может полностью или частично состоять из диэлектрического, ферромагнитного или сверхпроводящего материалов. Согласно существующей феноменологической теории в этом случае при изучении динами шара требуется учитывать момент силы Лоренца, момент Барнетта-Лондона и момент Эйнштейна-де Гааза. В рамках данной математической модели нами получены условия существования интегралов движения, которые позволяют свести интегрирование уравнений движения к квадратуре аналогичной квадратуре Лагранжа для тяжелого твердого тела.

    We consider the rolling of an unbalanced dynamically symmetric ball along a plane without slipping in the presence of an external magnetic field. We assume that the ball may be wholly or partially composed of dielectric, ferromagnetic, or superconducting materials. According to the existing phenomenological theory, in this case, when studying the dynamics of a ball, it is required to take into account the Lorentz force moment, Barnett-London moment, and Einstein-de Haas moment. Within the framework of this mathematical model, we obtain the conditions for the existence of integrals of motion, which allow us to reduce the integration of equations of motion to a quadrature similar to the Lagrange quadrature for a heavy rigid body.

  7. В работе рассматривается задача программного управления движением динамически несимметричного уравновешенного шара на плоскости при помощи трех двигателей-маховиков при условии, что шар катится без проскальзывания. Центр масс механической системы совпадает с геометрическим центром шара. Найдены законы управления, обеспечивающие движение шара вдоль базовых траекторий (прямой и окружности), а также по произвольно заданной кусочно-гладкой траектории на плоскости. В данной работе предлагается кватернионная модель движения шара, которая позволяет обойтись без традиционного использования тригонометрических функций, а кинематические уравнения записать в виде линейных дифференциальных уравнений, исключающих недостатки связанные с применением углов Эйлера. Решение поставленной задачи осуществляется с применением кватернионной функции времени, которая определяется видом траектории и законом движения точки контакта шара с плоскостью. Приведен пример управления движением шара и выполнена визуализация движения системы шар-маховики в пакете компьютерной алгебры.

    Mityushov E.A., Misyura N.E., Berestova S.A.
    Quaternion model of programmed control over motion of a Chaplygin ball, pp. 408-421

    This paper deals with the problem of program control of the motion of a dynamically asymmetric balanced ball on the plane using three flywheel motors, provided that the ball rolls without slipping. The center of mass of the mechanical system coincides with the geometric center of the ball. Control laws are found to ensure the motion of the ball along the basic trajectories (line and circle), as well as along an arbitrarily given piecewise smooth trajectory on the plane. In this paper, we propose a quaternion model of ball motion. The model does not require using the traditional trigonometric functions. Kinematic equations are written in the form of linear differential equations eliminating the disadvantages associated with the use of Euler angles. The solution of the problem is carried out using the quaternion function of time, which is determined by the type of trajectory and the law of motion of the point of contact of the ball with the plane. An example of ball motion control is given and a visualization of the ball-flywheel system motion in a computer algebra package is presented.

  8. В работе рассмотрены вопросы о гамильтонизации и интегрируемости неголономной задачи Суслова и ее обобщения, предложенного Чаплыгиным. Вопросы важны для понимания качественных особенностей динамики этой системы и, в частности, связаны с нетривиальным асимптотическим поведением (то есть некоторой задачей рассеяния). Статья развивает общий подход авторов, основанный на изучении иерархии динамического поведения неголономных систем.

    We consider the problems of Hamiltonian representation and integrability of the nonholonomic Suslov system and its generalization suggested by S.A. Chaplygin. These aspects are very important for understanding the dynamics and qualitative analysis of the system. In particular, they are related to the nontrivial asymptotic behaviour (i.e. to some scattering problem). The paper presents a general approach based on the study of the hierarchy of dynamical behaviour of nonholonomic systems.

  9. В работе исследуются различные механические системы с неголономными связями. В частности, рассмотрены вопросы существования тензорных инвариантов (законов сохранения) и их связь с поведением системы. Особое внимание уделено возможности представления уравнений движения в конформно-гамильтоновой форме, которая в данной работе используется, главным образом, для интегрирования систем.

    We consider different mechanical systems with nonholonomic constraints; in particular, we examine the existence of tensor invariants (laws of conservation) and their connection with the behavior of a system. Considerable attention is given to the possibility of conformally Hamiltonian representation of the equations of motion, which is mainly used for the integration of the considered systems.

  10. Болсинов А.В., Борисов А.В., Мамаев И.С.
    Методы компьютерного моделирования в неголономных системах, с. 186-191

    В работе рассматривается проблема гамильтонизации неголономных систем, как интегрируемых, так и неинтегрируемых. Этот вопрос является важным при качественном исследовании этих систем и позволяет определить возможные динамические эффекты. Первая часть работы посвящена представлению в конформно гамильтоновой форме интегрируемых систем. Во второй части доказывается существование конформно гамильтонового представления в окрестности периодического решения для произвольной (в том числе интегрируемой) системы, сохраняющей инвариантную меру. Общие конструкции всюду иллюстрируются примерами из неголономной механики.

    Bolsinov A.V., Borisov A.V., Mamaev I.S.
    On the computer methods in nonholonomic systems, pp. 186-191

    Hamiltonisation problem for non-holonomic systems, both integrable and non-integrable, is considered. This question is important for qualitative analysis of such systems and allows one to determine possible dynamical effects. The first part is devoted to the representation of integrable systems in a conformally Hamiltonian form. In the second part, the existence of a conformally Hamiltonian representation in a neighbourhood of a periodic solution is proved for an arbitrary measure preserving system (including integrable). General consructions are always illustrated by examples from non-holonomic mechanics.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref