Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается задача о назначении спектра показателей Ляпунова линейной управляемой системы с дискретным временем $$x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \qquad (1)$$ посредством линейной по фазовым переменным обратной связи $u(m)=U(m)x(m)$ в малой окрестности спектра показателей свободной системы $$x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (2)$$ Дополнительно требуется, чтобы норма матрицы обратной связи $U(\cdot)$ удовлетворяла липшицевой оценке по отношению к требуемому смещению показателей. Это свойство называется пропорциональной локальной управляемостью полного спектра показателей Ляпунова замкнутой системы $$x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (3)$$ Построен пример, показывающий, что найденные ранее достаточные условия пропорциональной локальной управляемости полного спектра показателей Ляпунова системы (3) (равномерная полная управляемость системы (1) и устойчивость показателей Ляпунова свободной системы (2)) не являются необходимыми.
On the conditions of proportional local assignability of the Lyapunov spectrum of a linear discrete-time system, pp. 301-311We consider a problem of assigning the Lyapunov spectrum for a linear control discrete-time system $$x(m+1)=A(m)x(m)+B(m)u(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\ u\in\mathbb R^{k}, \qquad (1)$$ in a small neighborhood of the Lyapunov spectrum of the free system $$x(m+1)=A(m)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n},\qquad (2) $$ by means of linear feedback $u(m)=U(m)x(m)$. We assume that the norm of the feedback matrix $U(\cdot)$ satisfies the Lipschitz estimate with respect to the required shift of the Lyapunov spectrum. This property is called proportional local assignability of the Lyapunov spectrum of the closed-loop system $$x(m+1)=\bigl(A(m)+B(m)U(m)\bigr)x(m),\quad m\in\mathbb N,\ x\in\mathbb R^{n}. \qquad (3)$$ We previously proved that uniform complete controllability of system (1) and stability of the Lyapunov spectrum of free system (2) are sufficient conditions for proportional local assignability of the Lyapunov spectrum of closed-loop system (3). In this paper we give an example demonstrating that these conditions are not necessary.
-
Рассматривается линейная управляемая система с неполной обратной связью с дискретным временем
x(t+1)=A(t)x(t)+B(t)u(t), y(t)=C*(t)x(t), u(t)=U(t)y(t), t∈Z.
Исследуется задача управления асимптотическим поведением замкнутой системы
x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn. (1)
Здесь K=C или K=R. Для такой системы вводится понятие согласованности. Это понятие является обобщением понятия полной управляемости на системы с неполной обратной связью. Исследовано свойство согласованности системы (1), получены новые необходимые условия и достаточные условия согласованности системы (1), в том числе в стационарном случае. Для стационарной системы вида (1) исследуется задача о глобальном управлении спектром собственных значений, которая заключается в приведении характеристического многочлена матрицы стационарной системы (1) с помощью стационарного управления U к произвольному наперед заданному полиному. Для системы (1) с постоянными коэффициентами специального вида, когда матрица A имеет форму Хессенберга, а в матрицах B и C все строки соответственно до p-й и после p-й (не включая p) равны нулю, свойство согласованности является достаточным условием глобальной управляемости спектра собственных значений. Ранее было доказано, что обратное утверждение верно для n<4 и неверно для n>5. В настоящей работе доказано, что обратное утверждение верно для n=4.
линейная управляемая система, неполная обратная связь, согласованность, управление спектром, стабилизация, дискретная системаWe consider a discrete-time linear control system with an incomplete feedback
x(t+1)=A(t)x(t)+B(t)u(t), y(t)=C*(t)x(t), u(t)=U(t)y(t), t∈Z.
We study the problem of control over the asymptotic behavior of the closed-loop system
x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn. (1)
where K=C or K=R. For the above system, we introduce the concept of consistency, which is a generalization of the concept of complete controllability onto systems with an incomplete feedback. The focus is on the consistency property of the system (1). We have obtained new necessary conditions and sufficient conditions for the consistency of the above system including the case when the system is time-invariant. For the time-invariant system (1), we study the problem of arbitrary placement of eigenvalue spectrum. The objective is to reduce a characteristic polynomial of a matrix of the stationary system (1) to any prescribed polynomial by means of the time-invariant control U. For the system (1) with constant coefficients of the special form where the matrix A is Hessenberg, the rows of the matrix B before the p-th and the rows of the matrix C after the p-th are equal to zero (not including p), the property of consistency is the sufficient condition for arbitrary placement of eigenvalue spectrum. It has been proved that the converse proposition is true for n<4 and false for n>5. In present paper we prove that the converse proposition is true for n=4.
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=Q_0 y(t)+Q_1 y(t-h)$. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты $Q_0$, $Q_1$ обратной связи таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Полученные результаты распространяются на системы с несколькими запаздываниями. Получены следствия о стабилизации системы $(1)$, а также системы вида $(1)$ с несколькими запаздываниями, посредством линейной статической обратной связи по выходу с запаздыванием.
Finite spectrum assignment problem in linear systems with state delay by static output feedback, pp. 463-473We consider a control system defined by a linear time-invariant system of differential equations with delay $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ We construct the controller for the system $(1)$ as linear output feedback $u(t)=Q_0 y(t)+Q_1 y(t-h)$. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain matrices $Q_0$, $Q_1$ such that the characteristic quasipolynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system $(1)$ under which the criterion was found for solvability of the finite spectrum assignment problem. The obtained result extends to systems with several delays. Corollaries on stabilization by linear static output feedback with delay are obtained for system $(1)$ as well as for systems of type $(1)$ with several delays.
-
Об управлении отдельными асимптотическими инвариантами двумерных линейных управляемых систем с наблюдателем, с. 445-461Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).
линейная управляемая система с наблюдателем, равномерная полная управляемость, равномерная полная наблюдаемость, глобальная управляемость асимптотических инвариантов
Control over some asymptotic invariants of two-dimensional linear control systems with an observer, pp. 445-461We consider a linear time-varying control system with an observer with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p. \qquad(2)$$ We study a problem of control over asymptotic invariants for the system closed by linear dynamic output feedback with time-varying coefficients. The research method presented in the paper is based on the construction of a system of asymptotic estimation for the state of the system (1), (2), introduced by R. Kalman. For solving the problem, we use the extension of the notion of uniform complete controllability (in the sense of Kalman) proposed by E.L. Tonkov for systems with coefficients from wider functional classes. The notion of uniform complete observability (in the sense of Tonkov) is given for the system (1), (2). For $n=2$, it is proved that uniform complete controllability and uniform complete observability (in the sense of Tonkov) of the system (1), (2) with locally integrable and integrally bounded coefficients are sufficient for arbitrary assignability of the upper Bohl exponent and of the complete spectrum of the Lyapunov exponents for the system closed-loop by linear dynamic output feedback. For the proof, we use the previously established results on uniform global attainability of a two-dimensional system (1), closed by linear time-varying static state feedback, under the condition of uniform complete controllability (in the sense of Tonkov) of the open-loop system (1).
-
Рассматривается билинейная управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянный вектор управления таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Критерий выражен в терминах ранговых условий для матриц специального вида. Показана взаимосвязь этих ранговых условий со свойством согласованности усеченной системы без запаздывания. Получены следствия о стабилизации билинейной системы с запаздыванием. Результаты обобщают полученные ранее результаты о назначении спектра для линейных систем со статической обратной связью по выходу с запаздыванием и для билинейных систем без запаздывания. Полученные результаты переносятся на билинейные системы с запаздыванием с дискретным временем. Рассмотрен иллюстрирующий пример.
We consider a bilinear control system defined by a linear time-invariant system of differential equations with delay in the state variable. We study an arbitrary finite spectrum assignment problem by stationary control. One needs to construct constant control vector such that the characteristic quasi-polynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of this finite spectrum assignment problem. This criterion is expressed in terms of rank conditions for matrices of the special form. Interconnection of these rank conditions with the property of consistency for truncated system without delay is shown. Corollaries on stabilization of a bilinear system with delay are obtained. The results extend the previously obtained results on spectrum assignment for linear systems with static output feedback with delay and for bilinear systems without delay. The results obtained are transferred to discrete-time bilinear systems with delay. An illustrative example is considered.
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с сосредоточенными и распределенными запаздываниями по состоянию. Управление в системе строится в виде линейной статической обратной связи по выходу с сосредоточенными и распределенными запаздываниями в тех же узлах. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты обратной связи таким образом, чтобы характеристическая функция замкнутой системы обращалась в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Получены следствия о стабилизации системы с несколькими запаздываниями посредством линейной статической обратной связи по выходу с запаздываниями.
We consider a control system defined by a linear time-invariant system of differential equations with lumped and distributed delays in the state variable. We construct a controller for the system as linear static output feedback with lumped and distributed delays in the same nodes. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain coefficients such that the characteristic function of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of the finite spectrum assignment problem. Corollaries on stabilization by linear static output feedback with several delays are obtained for the closed-loop system.
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с соизмеримыми запаздываниями в состоянии $$ \dot x(t)=Ax(t)+\sum\limits_{j=1}^sA_jx(t-jh)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad \qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=\sum\limits_{\rho =0}^{\theta}Q_\rho y(t-\rho h)$. Исследуется задача назначения произвольного спектра для замкнутой системы: требуется определить число $\theta$ и построить матрицы $Q_{\rho}$, $\rho=0,\ldots,\theta$, обратной связи таким образом, чтобы характеристическая функция замкнутой системы с соизмеримыми запаздываниями обращалась в квазиполином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения произвольного спектра. Получены следствия о стабилизации системы $(1)$ посредством линейной статической обратной связи по выходу с соизмеримыми запаздываниями. Рассмотрен иллюстрирующий пример.
линейные системы с последействием, соизмеримые запаздывания, задача назначения спектра, стабилизация, статическая обратная связь по выходуWe consider a control system defined by a linear time-invariant system of differential equations with commensurate delays in state $$ \dot x(t)=Ax(t)+\sum\limits_{j=1}^sA_jx(t-jh)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad \qquad(1) $$ We construct a controller for the system $(1)$ as linear static output feedback $u(t)=\sum\limits_{\rho =0}^{\theta}Q_\rho y(t-\rho h)$. We study an arbitrary spectrum assignment problem for the closed-loop system. One needs to define a $\theta$ and to construct gain matrices $Q_{\rho}$, $\rho=0,\ldots,\theta$, such that the characteristic function of the closed-loop system with commensurate delays becomes a quasipolynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system $(1)$ under which the criterion is found for solvability of the problem of arbitrary spectrum assignment. Corollaries on stabilization by linear static output feedback with commensurate delays are obtained for the system $(1)$. An illustrative example is considered.
-
Рассматривается билинейная управляемая система, заданная линейной стационарной дифференциальной системой с несколькими несоизмеримыми запаздываниями в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянные векторы управления таким образом, чтобы характеристическая функция замкнутой системы равнялась многочлену с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Показана взаимосвязь условий критерия со свойством согласованности усеченной системы без запаздываний. Получены следствия о стабилизации билинейных систем с запаздываниями. Аналогичные результаты получены для билинейных системы с несколькими запаздываниями с дискретным временем. Рассмотрен иллюстрирующий пример.
A bilinear control system defined by a linear stationary differential system with several non-commensurate delays in the state variable is considered. A problem of finite spectrum assignment by constant control is studied. One needs to construct constant control vectors such that the characteristic function of the closed-loop system is equal to a polynomial with arbitrary given coefficients. Conditions on coefficients of the system are obtained under which the criterion was found for solvability of the finite spectrum assignment problem. Interconnection of the criterion conditions with the property of consistency for the truncated system without delays is shown. Corollaries on stabilization of bilinear systems with delays are obtained. The similar results are obtained for discrete-time bilinear systems with several delays. An illustrative example is considered.
-
Для блочных матричных линейных систем управления изучается свойство, обеспечивающее назначение произвольных матричных коэффициентов для характеристического матричного полинома. Это свойство является обобщением свойства назначаемости спектра собственных значений или назначаемости произвольных коэффициентов характеристического полинома, от систем с блочными матрицами со скалярными блоками $(s=1)$ на системы с блочными матрицами с блоками более высоких размерностей $(s>1)$. По сравнению со скалярным случаем $(s=1)$ в блочных случаях более высоких размерностей $(s>1)$ появляются новые особенности, отсутствующие в скалярном случае. Вводятся новые свойства, обеспечивающие назначение произвольных (верхнетреугольных, нижнетреугольных, диагональных) матричных коэффициентов для характеристического матричного полинома. В скалярном случае все описанные свойства эквивалентны друг другу, однако в блочных случаях более высоких размерностей это не так. Устанавливаются импликации между этими свойствами.
линейная стационарная система управления, назначение спектра собственных значений, линейная статическая обратная связь, блочная матричная системаFor block matrix linear control systems, we study the property of arbitrary matrix coefficient assignability for the characteristic matrix polynomial. This property is a generalization of the property of eigenvalue spectrum assignability or arbitrary coefficient assignability for the characteristic polynomial from system with scalar $(s=1)$ block matrices to systems with block matrices of higher dimensions $(s>1)$. Compared to the scalar case $(s=1)$, new features appear in the block cases of higher dimensions $(s>1)$ that are absent in the scalar case. New properties of arbitrary (upper triangular, lower triangular, diagonal) matrix coefficient assignability for the characteristic matrix polynomial are introduced. In the scalar case, all the described properties are equivalent to each other, but in block matrix cases of higher dimensions this is not the case. Implications between these properties are established.
-
Рассматривается линейная система управления, заданная стационарным дифференциальным уравнением с одним сосредоточенным и одним распределенным запаздыванием. В системе на вход подается линейная комбинация из $m$ сигналов и их производных до порядка $n-p$ включительно, а выход представляет собой $k$-мерный вектор линейных комбинаций состояния и его производных до порядка не более $p-1$. Для этой системы исследуется задача управления спектром с помощью линейной статической обратной связи по выходу с сосредоточенным и распределенным запаздываниями. Получены необходимые и достаточные условия разрешимости задачи произвольного размещения спектра посредством статической обратной связи по выходу, имеющей тот же вид, что и система. Получены следствия о стабилизации системы.
линейное дифференциальное уравнение, сосредоточенное запаздывание, распределенное запаздывание, управление спектром, стабилизация, статическая обратная связь по выходуA linear control system defined by a stationary differential equation with one lumped and one distributed delay is considered. In the system, the input is a linear combination of $m$ variables and their derivatives of order not more than $n-p$ and the output is a $k$-dimensional vector of linear combinations of the state and its derivatives of order not more than $p-1$. For this system, a spectrum assignment problem by linear static output feedback with delays is studied. Necessary and sufficient conditions are obtained for solvability of the arbitrary spectrum assignment problem by static output feedback controller of the same type as the system. Corollaries on stabilization of the system are obtained.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.