Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Асимптотическое распределение времени попадания для критических отображений на окружности, с. 365-383Хорошо известно, что преобразование ренормгруппы $\mathcal{R}$ имеет единственную неподвижную точку $f_ {cr}$ в пространстве критических $C^{3}$-гомеоморфизмов окружности с одной кубической критической точкой $x_{cr}$ и числом вращения равным золотому сечению $\overline{\rho}: =\frac{\sqrt{5} -1}{2}.$ Обозначим через $Cr(\overline{\rho})$ множество всех критических отображений окружности $C^ {1}$-сопряженных к $f_{cr}.$ Пусть $f\in Cr(\overline{\rho})$ и $\mu:=\mu_{f}$ --- единственная вероятностная инвариантная мера для $f.$ Зафиксируем $\theta \in (0,1).$ Для каждого $n\geq 1$ определим $c_{n}:=c_{n}(\theta)$ такое, что $\mu([x_{cr}, c_{n}]) = \theta\cdot\mu([x_{cr}, f^{q_{n}} (x_{cr})]),$ где $q_{n}$ --- время первого возврата линейного вращения $f_{\overline{\rho}}.$ Мы исследуем закон сходимости перемасштабированного точечного процесса времени попадания. Мы показываем, что предельное распределение сингулярно относительно меры Лебега.
-
Излагаются основы теории неосцилляции решений обыкновенного линейного однородного дифференциального уравнения n-го порядка с новыми доказательствами некоторых основных теорем: признаки неосцилляции, ее следствия, свойства неосцилляционных уравнений. Для уравнения второго порядка приводятся новые достаточные признаки неосцилляции.
-
В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.
В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.
С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.
Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.
-
В действительных алгебрах Клиффорда нечетной размерности исследуется теорема Паули. В алгебрах Клиффорда $R_{3,0}$ и $R_{5,0}$ дается алгоритм построения оператора Паули. Этот алгоритм переносится на произвольную алгебру Клиффорда нечетной размерности $R_{p,q+1}$ ($R_{p+1,q}$). Получена итерационная формула для нахождения оператора Паули. Показано, что проблема построения оператора Паули связана с проблемой делителей нуля в алгебрах Клиффорда. При построении операторов Паули используется два вида сопряжения: сопряжение Клиффорда и сопряжение «реверс». Если $p+q+1\equiv 3\pmod 4$, то при построении оператора Паули используется сопряжение Клиффорда, если $p+q+1\equiv 1 \pmod 4$, то используется сопряжение «реверс».
-
Сопряженное пространство к Crc(X), с. 41-49Исследуется сопряженное пространство непрерывных линейных функционалов пространства Crc(X) . В работе rc обозначает C-компактно-открытую топологию на C(X), множестве всех вещественнозначных функций на тихоновском пространстве X. Так как сопряженное пространство соотносится с пространством мер, то получена характеристика сопряженного пространства к Crc(X) с точки зрения теории меры. Исследуется свойство сепарабельности сопряженного пространства.
-
В предыдущей работе автора для двух прерывистых функций, заданных на отрезке, и специального параметра, названного дефектом, определено понятие квазиинтеграла. Если существует интеграл Римана–Стилтьеса, то для любого дефекта существует квазиинтеграл, и все они равны между собой. Интеграл Перрона–Стилтьеса, если он существует, совпадает с одним из квазиинтегралов, где дефект определен специальным образом.
В настоящей работе доказана теорема существования и единственности решения квазиинтегрального уравнения с постоянной матрицей. Ядро системы - скалярная кусочно-непрерывная функция ограниченной вариации, компоненты уравнения - прерывистые функции, спектральный параметр - регулярное число. При определенных условиях квазиинтегральное уравнение можно интерпретировать как импульсную систему. Получено явное представление для решения однородного квазиинтегрального уравнения. Для абсолютно регулярного спектрального параметра определен аналог матрицы Коши, исследованы его свойства и получено явное представление для решения неоднородного квазиинтегрального уравнения в форме Коши. Аналогичные результаты получены для сопряженного и союзных уравнений.
Обсуждается возможность восстановления аппроксимирующего дефекта квазиинтеграла, - дефекта, порождающего аппроксимируемые решения импульсной системы.
-
Моделирование взаимодействия сверхзвукового потока и деформируемой панели в ударной трубе, с. 156-165Рассматриваются постановка и алгоритм решения сопряженной задачи взаимодействия сверхзвукового потока и деформируемой панели. Течение газа описывается системой уравнений сохранения в приближении совершенного газа. Численное интегрирование выполняется на основе метода конечных объемов. Для вычисления конвективных потоков применялась монотонизированная схема, обеспечивающая второй порядок аппроксимации по пространству в областях гладкости. Задача динамики деформирования панели аппроксимировалась по пространству методом конечных элементов, а по времени по схеме Ньюмарка. При решении задач использовались несогласованные неструктурированные сетки, отвечающие разным схемам дискретизации и требованиям аппроксимации. Условия сопряжения на границе раздела удовлетворялись при помощи алгоритма двустороннего слабого связывания. Численные результаты сопоставляются с известными экспериментальными данными. Проводится анализ различных факторов, влияющих на картину течения и форму колебаний пластины.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.