Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Построена метрика в пространстве clos(Rn) всех непустых замкнутых (необязательно ограниченных) подмножеств Rn. Сходимость последовательности множеств в этой метрике оказывается равносильной сходимости в метрике Хаусдорфа последовательности пересечений этих множеств с центрированными в нуле шарами любого положительного радиуса, дополненных соответствующими сферами. В этой метрике доказана полнота пространства clos(Rn) и замкнутость подпространства всех непустых замкнутых выпуклых подмножеств Rn. Получены условия равносильности сходимости по предложенной метрике и сходимости по метрикам Хаусдорфа и Хаусдорфа–Бебутова. Полученные результаты могут применяться в задачах управления, теории дифференциальных включений.
-
Рассматриваются Cr-гладкие (r≥1) диффеоморфизмы многомерного пространства в себя с гиперболической неподвижной точкой и нетрансверсальной гомоклинической к ней точкой. Из работ Ш. Ньюхауса, Л.П. Шильникова, Б.Ф. Иванова и других авторов следует, что при определенном способе касания устойчивого и неустойчивого многообразий окрестность гомоклинической точки может содержать счетное множество устойчивых периодических точек, но по крайней мере один из характеристических показателей у таких точек стремится к нулю с ростом периода. В предлагаемой работе показано, что при определенных условиях, наложенных на характер касания устойчивого и неустойчивого многообразий, в окрестности нетрансверсальной гомоклинической точки лежит бесконечное множество устойчивых периодических точек, характеристические показатели которых отделены от нуля.
-
Для двухпараметрического семейства функций введено понятие TA-системы, которое является обобщением известного понятия T-системы для однопараметрического семейства функций. Сформулирован и доказан ряд утверждений о системах функций, образующих TA-систему. Построенная теория TA-систем применена для изучения линейных нестационарных управляемых систем с многомерным управлением. Для указанных выше систем решена задача о быстродействии в нуль при условии, что начальная точка движения находится внутри множества докритичности.
-
Сопряженное пространство к Crc(X), с. 41-49Исследуется сопряженное пространство непрерывных линейных функционалов пространства Crc(X) . В работе rc обозначает C-компактно-открытую топологию на C(X), множестве всех вещественнозначных функций на тихоновском пространстве X. Так как сопряженное пространство соотносится с пространством мер, то получена характеристика сопряженного пространства к Crc(X) с точки зрения теории меры. Исследуется свойство сепарабельности сопряженного пространства.
-
Рассматривается линейная стационарная задача преследования с участием группы преследователей и группы убегающих при условиях, что матрица системы является скалярной, среди преследователей имеются как участники, у которых множество допустимых управлений совпадает с множеством допустимых управлений убегающих, так и участники с меньшими возможностями. Множеством значений допустимых управлений убегающих является шар с центром в нуле. Цель группы преследователей состоит в том, чтобы «переловить» всех убегающих. Цель группы убегающих - помешать этому, то есть предоставить возможность по крайней мере одному из убегающих уклониться от встречи. Преследователи и убегающие используют кусочно-программные стратегии. Показано, что если в игре, в которой все участники обладают равными возможностями, происходит уклонение от встречи хотя бы одного убегающего на бесконечном промежутке времени, то добавление любого числа преследователей с меньшими возможностями приводит к тому, что хотя бы один из убегающих уклонится от встречи на любом конечном промежутке времени.
-
В данной работе исследуются различные разновидности показателей колеблемости (верхние или нижние, сильные или слабые) нулей, корней, гиперкорней, строгих и нестрогих знаков ненулевых решений линейных однородных дифференциальных систем на положительной полуоси. На множестве ненулевых решений систем установлены соотношения между этими показателями колеблемости. Доказано, что все сильные показатели колеблемости (в отличие от частот Сергеева смен знаков, нулей и корней, а также всех слабых показателей колеблемости), рассматриваемые как функции на множестве решений линейных однородных дифференциальных систем с непрерывными на полуоси коэффициентами, не являются остаточными (т.е. могут меняться при изменении решения на конечном отрезке). Кроме того, при любом наперед заданном натуральном $n\ge2$ приводится пример $n$-мерной дифференциальной системы, у которой все сильные показатели колеблемости некоторого решения не совпадают с соответствующими слабыми показателями. При этом все слабые и все сильные показатели на выбранном решении совпадают соответственно между собой. При доказательстве результатов настоящей работы отдельно рассмотрены случаи четности и нечетности $n$.
-
Задача простого группового преследования с возможным нарушением в динамике и фазовыми ограничениями, с. 82-95В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей одного убегающего, описываемая системой вида $$\dot z_i = a_i(t) u_i - v,\quad u_i\in U_i,\quad v\in V,$$ где функции $a_i(t)$ равны 1 при всех $t$, за исключением некоторого отрезка заданной длины, на котором они равны нулю (для каждого преследователя свой отрезок). Этот факт можно трактовать так, что у каждого из преследователей возможен отказ в работе управляющего устройства в любой заранее неизвестный момент времени, а длина промежутка времени, необходимого на устранение поломки, задана, при этом в процессе устранения поломки преследователи не имеют возможности осуществлять поимку. Целевые множества — выпуклые компакты, убегающий не покидает пределы выпуклого многогранного множества. Получены достаточные условия разрешимости задачи преследования.
-
Продолжено исследование условий положительной инвариантности и асимптотической устойчивости заданного множества относительно управляемой системы с импульсным воздействием. Рассматривается множество $\mathfrak M \doteq \bigl\{ (t,x) \in [t_0,+\infty) \times \mathbb{R}^n: x\in M(t)\bigr\}$, где функция $t\rightarrow M(t)$ непрерывна в метрике Хаусдорфа и для каждого $t \in [t_0,+\infty)$ множество $M(t)$ непусто и компактно. В терминах функций Ляпунова и производной Кларка получены условия слабой положительной инвариантности данного множества, слабой равномерной устойчивости по Ляпунову и слабой асимптотической устойчивости. Также доказана теорема сравнения для решений систем и уравнений с импульсами, следствием которой являются условия существования решений системы, асимптотически стремящихся к нулю. Полученные результаты проиллюстрированы на примере модели конкуренции двух видов, подверженных импульсному управлению в фиксированные моменты времени.
-
Рассматривается семейство максимальных сцепленных систем, элементами которых являются множества произвольной решетки с «нулем» и «единицей», а также его подсемейство, составленное из ультрафильтров данной решетки. Исследуются соотношения между естественными топологиями, используемыми для оснащения множества максимальных сцепленных систем и множества ультрафильтров упомянутой решетки множеств. Показано, что последнее множество в естественном (для пространств ультрафильтров) оснащении является подпространством пространства максимальных сцепленных систем в оснащении двумя сравнимыми топологиями, одна из которых подобна используемой при построении расширения Волмэна, а вторая соответствует на идейном уровне схеме построения пространства Стоуна в случае, когда решетка является алгеброй множеств. Свойства получающейся битопологической структуры детализированы для случаев, когда решетка является алгеброй множеств, топологией, семейством замкнутых множеств топологического пространства.
-
В данной работе исследуются различные разновидности показателей колеблемости (верхние или нижние, сильные или слабые) нулей, корней, гиперкорней, строгих и нестрогих знаков ненулевых решений линейных однородных автономных дифференциальных систем на положительной полуоси. На множестве ненулевых решений автономных систем установлены соотношения между этими показателями колеблемости. Полностью изучены спектры показателей колеблемости автономных систем. Оказалось, что они напрямую зависят от корней соответствующего характеристического многочлена системы. Как следствие, найдены спектры всех показателей колеблемости автономных систем с симметричной матрицей. Доказано, что они состоят из одного нулевого значения. Кроме того, дано полное описание главных значений показателей колеблемости таких систем. Эти значения для показателей колеблемости нестрогих знаков, корней и гиперкорней совпали с множеством модулей мнимых частей собственных значений матрицы системы, а показатели колеблемости строгих знаков могут состоять из нуля и наименьшего по модулю из мнимых частей комплексных корней соответствующего характеристического многочлена.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.