Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'characteristic polynomial':
Найдено статей: 9
  1. Рассматривается линейная управляемая система с неполной обратной связью с дискретным временем

    x(t+1)=A(t)x(t)+B(t)u(t),   y(t)=C*(t)x(t),   u(t)=U(t)y(t),   t∈Z.

    Исследуется задача управления асимптотическим поведением замкнутой системы

    x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn.                (1)

    Здесь K=C или K=R. Для такой системы вводится понятие согласованности. Это понятие является обобщением понятия полной управляемости на системы с неполной обратной связью. Исследовано свойство согласованности системы (1), получены новые необходимые условия и достаточные условия согласованности системы (1), в том числе в стационарном случае. Для стационарной системы вида (1) исследуется задача о глобальном управлении спектром собственных значений, которая заключается в приведении характеристического многочлена матрицы стационарной системы (1) с помощью стационарного управления U к произвольному наперед заданному полиному. Для системы (1) с постоянными коэффициентами специального вида, когда матрица A имеет форму Хессенберга, а в матрицах B и C все строки соответственно до p-й и после p-й (не включая p) равны нулю, свойство согласованности является достаточным условием глобальной управляемости спектра собственных значений. Ранее было доказано, что обратное утверждение верно для n<4 и неверно для n>5. В настоящей работе доказано, что обратное утверждение верно для n=4.

    We consider a discrete-time linear control system with an incomplete feedback

    x(t+1)=A(t)x(t)+B(t)u(t),   y(t)=C*(t)x(t),   u(t)=U(t)y(t),   t∈Z.

    We study the problem of control over the asymptotic behavior of the closed-loop system

    x(t+1)=(A(t)+B(t)U(t)C*(t))x(t), x∈Kn.               (1)

    where K=C or K=R. For the above system, we introduce the concept of consistency, which is a generalization of the concept of complete controllability onto systems with an incomplete feedback. The focus is on the consistency property of the system (1). We have obtained new necessary conditions and sufficient conditions for the consistency of the above system including the case when the system is time-invariant. For the time-invariant system (1), we study the problem of arbitrary placement of eigenvalue spectrum. The objective is to reduce a characteristic polynomial of a matrix of the stationary system (1) to any prescribed polynomial by means of the time-invariant control U. For the system (1) with constant coefficients of the special form where the matrix A is Hessenberg, the rows of the matrix B before the p-th and the rows of the matrix C after the p-th are equal to zero (not including p), the property of consistency is the sufficient condition for arbitrary placement of eigenvalue spectrum. It has been proved that the converse proposition is true for n<4 and false for n>5. In present paper we prove that the converse proposition is true for n=4.

  2. Рассматривается линейная управляемая система с линейной неполной обратной связью с дискретным временем $$x(t+1)=Ax(t)+Bu(t), \quad y(t)=C^*x(t), \quad u(t)=Uy(t),$$ $$t\in\mathbb{Z},\quad (x,u,y)\in\mathbb{K}^n\times\mathbb{K}^m\times\mathbb{K}^k.$$

    Здесь $\mathbb K=\mathbb C$ или $\mathbb K=\mathbb R$. Для замкнутой системы $$x(t+1)=(A+BUC^*)x(t), \quad x\in\mathbb K^n, \qquad(1)$$

    вводится понятие согласованности. Это понятие является обобщением понятия полной управляемости на системы с неполной обратной связью. Исследуется свойство согласованности системы $(1)$ в связи с задачей управления спектром собственных значений, которая заключается в приведении характеристического многочлена матрицы стационарной системы $(1)$ с помощью стационарного управления $U$ к произвольному наперед заданному полиному. Для системы $(1)$ специального вида, когда матрица $A$ имеет форму Хессенберга, а в матрицах $B$ и $C$ все строки соответственно до $p$-й и после $p$-й (не включая $p$) равны нулю, свойство согласованности является достаточным условием глобальной управляемости спектра собственных значений. В предыдущих работах было доказано, что обратное утверждение верно для $n<5$ и неверно для $n>5$. В настоящей работе открытый вопрос для $n=5$ разрешен. Доказано, что при $n=5$ для системы с коэффициентами специального вида свойство согласованности является необходимым условием глобальной управляемости спектра собственных значений. Доказательство производится перебором всевозможных допустимых значений размерностей $m,k,p$. Свойство согласованности эквивалентно свойству полной управляемости «большой системы» размерности $n^2$. Для доказательства строится большая система, строится матрица управляемости $K$ этой системы размерности $n^2\times n^2mk$. Доказывается, что матрица $K$ имеет ненулевой минор порядка $n^2=25$. Для вычисления определителей больших порядков используется система Maple 15.

    We consider a discrete-time linear control system with an incomplete feedback $$x(t+1)=Ax(t)+Bu(t), \quad y(t)=C^*x(t), \quad u(t)=Uy(t),$$ $$t\in\mathbb{Z},\quad (x,u,y)\in\mathbb{K}^n\times\mathbb{K}^m\times\mathbb{K}^k,$$

    where $\mathbb K=\mathbb C$ or $\mathbb K=\mathbb R$. We introduce the concept of consistency for the closed-loop system

    $$x(t+1)=(A+BUC^*)x(t), \quad x\in\mathbb K^n. \qquad(1)$$

    This concept is a generalization of the concept of complete controllability to systems with an incomplete feedback. We study the consistency of the system $(1)$ in connection with the problem of arbitrary placement of eigenvalue spectrum which is to bring a characteristic polynomial of a matrix of the system $(1)$ to any prescribed polynomial by means of the time-invariant control $U$. For the system $(1)$ of the special form where the matrix $A$ is Hessenberg and the rows of the matrix $B$ before the $p$-th and the rows of the matrix $C$ after the $p$-th (not including $p$) are equal to zero, the property of consistency is the sufficient condition for arbitrary placement of eigenvalue spectrum. In previous studies it has been proved that the converse is true for $n <5$ and false for $n> 5$. In this paper, an open question for $ n = 5 $ is resolved. For the system $(1)$ of the special form, it is proved that if $n = 5$ then the property of consistency is a necessary condition for the arbitrary placement of eigenvalue spectrum. The proof is carried out by direct searching of all possible valid values of dimensions $ m, k, p $. The property of consistency is equivalent to the property of complete controllability of a big system of dimension $n^2$. For the proof we construct the big system and the controllability matrix $K$ of this system of dimension $n^2\times n^2mk$. We show that the matrix $K$ has a nonzero minor of order $n^2 = 25$. We use Maple 15 to calculate the high-order determinants.

  3. Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=Q_0 y(t)+Q_1 y(t-h)$. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты $Q_0$, $Q_1$ обратной связи таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Полученные результаты распространяются на системы с несколькими запаздываниями. Получены следствия о стабилизации системы $(1)$, а также системы вида $(1)$ с несколькими запаздываниями, посредством линейной статической обратной связи по выходу с запаздыванием.

    We consider a control system defined by a linear time-invariant system of differential equations with delay $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ We construct the controller for the system $(1)$ as linear output feedback $u(t)=Q_0 y(t)+Q_1 y(t-h)$. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain matrices $Q_0$, $Q_1$ such that the characteristic quasipolynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system $(1)$ under which the criterion was found for solvability of the finite spectrum assignment problem. The obtained result extends to systems with several delays. Corollaries on stabilization by linear static output feedback with delay are obtained for system $(1)$ as well as for systems of type $(1)$ with several delays.

  4. Рассматривается билинейная управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянный вектор управления таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Критерий выражен в терминах ранговых условий для матриц специального вида. Показана взаимосвязь этих ранговых условий со свойством согласованности усеченной системы без запаздывания. Получены следствия о стабилизации билинейной системы с запаздыванием. Результаты обобщают полученные ранее результаты о назначении спектра для линейных систем со статической обратной связью по выходу с запаздыванием и для билинейных систем без запаздывания. Полученные результаты переносятся на билинейные системы с запаздыванием с дискретным временем. Рассмотрен иллюстрирующий пример.

    We consider a bilinear control system defined by a linear time-invariant system of differential equations with delay in the state variable. We study an arbitrary finite spectrum assignment problem by stationary control. One needs to construct constant control vector such that the characteristic quasi-polynomial of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of this finite spectrum assignment problem. This criterion is expressed in terms of rank conditions for matrices of the special form. Interconnection of these rank conditions with the property of consistency for truncated system without delay is shown. Corollaries on stabilization of a bilinear system with delay are obtained. The results extend the previously obtained results on spectrum assignment for linear systems with static output feedback with delay and for bilinear systems without delay. The results obtained are transferred to discrete-time bilinear systems with delay. An illustrative example is considered.

  5. Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с сосредоточенными и распределенными запаздываниями по состоянию. Управление в системе строится в виде линейной статической обратной связи по выходу с сосредоточенными и распределенными запаздываниями в тех же узлах. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты обратной связи таким образом, чтобы характеристическая функция замкнутой системы обращалась в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Получены следствия о стабилизации системы с несколькими запаздываниями посредством линейной статической обратной связи по выходу с запаздываниями.

    We consider a control system defined by a linear time-invariant system of differential equations with lumped and distributed delays in the state variable. We construct a controller for the system as linear static output feedback with lumped and distributed delays in the same nodes. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain coefficients such that the characteristic function of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of the finite spectrum assignment problem. Corollaries on stabilization by linear static output feedback with several delays are obtained for the closed-loop system.

  6. Построен характеристический многочлен спектральной задачи дифференциального уравнения первого порядка на отрезке со спектральным параметром в краевом условии с интегральным возмущением, которое является целой аналитической функцией от спектрального параметра. На основе формулы характеристического многочлена доказаны выводы об асимптотике спектра возмущенной спектральной задачи.

    This work is devoted to the construction of a characteristic polynomial of the spectral problem of a first-order differential equation on an interval with a spectral parameter in a boundary value condition with integral perturbation which is an entire analytic function of the spectral parameter. Based on the characteristic polynomial formula, conclusions about the asymptotics of the spectrum of the perturbed spectral problem are established.

  7. Рассматривается билинейная управляемая система, заданная линейной стационарной дифференциальной системой с несколькими несоизмеримыми запаздываниями в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянные векторы управления таким образом, чтобы характеристическая функция замкнутой системы равнялась многочлену с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Показана взаимосвязь условий критерия со свойством согласованности усеченной системы без запаздываний. Получены следствия о стабилизации билинейных систем с запаздываниями. Аналогичные результаты получены для билинейных системы с несколькими запаздываниями с дискретным временем. Рассмотрен иллюстрирующий пример.

    Zaitsev V.A., Kim I.G., Khartovskii V.E.
    Finite spectrum assignment problem for bilinear systems with several delays, pp. 319-331

    A bilinear control system defined by a linear stationary differential system with several non-commensurate delays in the state variable is considered. A problem of finite spectrum assignment by constant control is studied. One needs to construct constant control vectors such that the characteristic function of the closed-loop system is equal to a polynomial with arbitrary given coefficients. Conditions on coefficients of the system are obtained under which the criterion was found for solvability of the finite spectrum assignment problem. Interconnection of the criterion conditions with the property of consistency for the truncated system without delays is shown. Corollaries on stabilization of bilinear systems with delays are obtained. The similar results are obtained for discrete-time bilinear systems with several delays. An illustrative example is considered.

  8. Для блочных матричных линейных систем управления изучается свойство, обеспечивающее назначение произвольных матричных коэффициентов для характеристического матричного полинома. Это свойство является обобщением свойства назначаемости спектра собственных значений или назначаемости произвольных коэффициентов характеристического полинома, от систем с блочными матрицами со скалярными блоками $(s=1)$ на системы с блочными матрицами с блоками более высоких размерностей $(s>1)$. По сравнению со скалярным случаем $(s=1)$ в блочных случаях более высоких размерностей $(s>1)$ появляются новые особенности, отсутствующие в скалярном случае. Вводятся новые свойства, обеспечивающие назначение произвольных (верхнетреугольных, нижнетреугольных, диагональных) матричных коэффициентов для характеристического матричного полинома. В скалярном случае все описанные свойства эквивалентны друг другу, однако в блочных случаях более высоких размерностей это не так. Устанавливаются импликации между этими свойствами.

    For block matrix linear control systems, we study the property of arbitrary matrix coefficient assignability for the characteristic matrix polynomial. This property is a generalization of the property of eigenvalue spectrum assignability or arbitrary coefficient assignability for the characteristic polynomial from system with scalar $(s=1)$ block matrices to systems with block matrices of higher dimensions $(s>1)$. Compared to the scalar case $(s=1)$, new features appear in the block cases of higher dimensions $(s>1)$ that are absent in the scalar case. New properties of arbitrary (upper triangular, lower triangular, diagonal) matrix coefficient assignability for the characteristic matrix polynomial are introduced. In the scalar case, all the described properties are equivalent to each other, but in block matrix cases of higher dimensions this is not the case. Implications between these properties are established.

  9. В данной работе исследуются различные разновидности показателей колеблемости (верхние или нижние, сильные или слабые) нулей, корней, гиперкорней, строгих и нестрогих знаков ненулевых решений линейных однородных автономных дифференциальных систем на положительной полуоси. На множестве ненулевых решений автономных систем установлены соотношения между этими показателями колеблемости. Полностью изучены спектры показателей колеблемости автономных систем. Оказалось, что они напрямую зависят от корней соответствующего характеристического многочлена системы. Как следствие, найдены спектры всех показателей колеблемости автономных систем с симметричной матрицей. Доказано, что они состоят из одного нулевого значения. Кроме того, дано полное описание главных значений показателей колеблемости таких систем. Эти значения для показателей колеблемости нестрогих знаков, корней и гиперкорней совпали с множеством модулей мнимых частей собственных значений матрицы системы, а показатели колеблемости строгих знаков могут состоять из нуля и наименьшего по модулю из мнимых частей комплексных корней соответствующего характеристического многочлена.

    In this paper, we study various types of exponents of oscillation (upper or lower, strong or weak) of zeros, roots, hyperroots, strict and non-strict signs of non-zero solutions of linear homogeneous autonomous differential systems on the positive semi-axis. On the set of non-zero solutions of autonomous systems the relations between these exponents of oscillation are established. The spectra of the exponents of autonomous systems' oscillation are fully studied. It turned out that they directly depend on the roots of the corresponding characteristic polynomial of the system. As a consequence, spectra of all exponents of oscillation of autonomous systems with symmetric matrix are found. It is proved that they consist of a single zero value. In addition, a full description of the main values of the exponents of oscillation of such systems is given. These values for the exponents of oscillation of non-strict signs, roots and hyperroots coincided with the set of modules of imaginary parts of the system matrix's eigenvalues, and the exponents of oscillation of strict signs can consist of zero and the least, in absolute magnitude, imaginary part of the complex roots of the corresponding characteristic polynomial.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref