Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается линейная нестационарная дифференциальная игра преследования группы убегающих группой преследователей. Цель преследователей - поймать всех убегающих, цель убегающих - хотя бы одному уклониться от встречи. Все игроки обладают равными динамическими возможностями, геометрические ограничения на управление - строго выпуклый компакт с гладкой границей.
Рассматривается вопрос о минимальном количестве убегающих, достаточном для уклонения от заданного числа преследователей из любых начальных позиций. Для оценки сверху этого количества используются достаточные условия разрешимости глобальной задачи уклонения. В предположении, что для поимки одного убегающего достаточно принадлежности начальной позиции убегающего внутренности выпуклой оболочки начальных позиций преследователей, строится оценка снизу.
Полученная двухсторонняя оценка числа убегающих, достаточного для уклонения от встречи из любой начальной позиции от заданного числа преследователей, иллюстрируется примерами.
A linear non-stationary differential pursuit game with a group of pursuers and a group of evaders is considered. The pursuers' goal is to catch all evaders and the evaders' goal is at least for one of them to avoid contact with pursuers.
All players have equal dynamic capabilities, geometric constraints on the control are strictly convex compact set with smooth boundary. The point in question is the minimum number of evaders that is sufficient to evade a given number of pursuers from any initial position. Sufficient conditions for the solvability of the global problem of evasion are used as an upper estimate of this minimum. We assume that to capture one evader it suffices that the initial position of this evader lie in the interior of convex hull of initial positions of pursuers. Using this assumption we find a lower estimate of this minimum.
The obtained two-sided estimate of the number of evaders sufficient to avoid contact with a given number of pursuers from any initial position is illustrated by examples.
-
В настоящей работе проведено исследование модели деформаций системы из $n$ стилтьесовских струн, расположенных вдоль геометрического графа-звезды, с нелинейным условием в узле. Соответствующая граничная задача имеет вид $$ \left\{\begin{array}{lll} -\left(p_iu_i^\prime\right)(x)+\displaystyle{\int_{0}^{x}}u_i\,dQ_i=F_i(x)-F_i(+0)-(p_iu_i')(+0),\quad i=1,2, \ldots, n,\\ \sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0),\\ u_1(0)=u_2(0)=\ldots=u_n(0)=u(0),\\ (p_iu_i')(l_i-0)+u_i(l_i)\Delta Q_i(l_i)=\Delta F_i(l_i),\quad i=1,2,\ldots, n. \end{array} \right. $$ Здесь функции $u_i(x)$ определяют деформации каждой из струн; $F_i(x)$ описывают распределение внешней нагрузки; $p_i(x)$ характеризуют упругость струн; $Q_i(x)$ описывают упругую реакцию внешней среды. Скачок $\Delta F_i(l_i)$ равняется сосредоточенной в точке $l_i$ внешней силе; скачок $\Delta Q_i(l_i)$ совпадает с жесткостью упругой опоры (пружины), прикрепленной к точке $l_i$. Условие $\sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0)$ возникает за счет наличия в узле ограничителя, представленного отрезком $[-m,m]$, на перемещение струн под воздействием внешней нагрузки, то есть предполагается, что $|u(0)|\leq m$. Здесь через $N_{[-m,m]}u(0)$ обозначен нормальный конус к $[-m,m]$ в точке $u(0)$. В работе проведен вариационный вывод модели; доказаны теоремы существования и единственности решения; проанализированы критические нагрузки, при которых происходит соприкосновение струн с ограничителем; приведена явная формула представления решения.
интеграл Стилтьеса, функция ограниченной вариации, мера, геометрический граф, энергетический функционалIn the present paper we study a model of deformations for a system of $n$ Stieltjes strings located along a geometric graph-star with a nonlinear condition at the node. The corresponding boundary value problem has the form $$ \left\{\begin{array}{lll} -\left(p_iu_i^\prime\right)(x)+\displaystyle{\int_0^x}u_idQ_i=F_i(x)-F_i(+0)-(p_iu_i')(+0), \quad i=1,2, \ldots, n,\\ \sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0),\\ u_1(0)=u_2(0)=\ldots=u_n(0)=u(0),\\ (p_iu_i')(l_i-0)+u_i(l_i)\Delta Q_i(l_i)=\Delta F_i(l_i), \quad i=1,2,\ldots, n. \end{array} \right. $$ Here the functions $u_i(x)$ determine the deformations of each of the strings; $F_i(x)$ describe the distribution of the external load; $p_i(x)$ characterize the elasticity of strings; $Q_i(x)$ describe the elastic response of the environment. The jump $\Delta F_i(l_i)$ is equal to the external force concentrated at the point $l_i$; the jump $\Delta Q_i(l_i)$ coincides with the stiffness of the elastic support (spring) attached to the point $l_i$. The condition $\sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0)$ arises due to the presence of a limiter in the node represented by the segment $ [-m,m]$, on the movement of strings under the influence of an external load, thus it is assumed that $|u(0)|\leq m$. Here $N_{[-m,m]}u(0)$ denotes the normal cone to $[-m,m]$ at the point $u(0)$. In the present paper a variational derivation of the model is carried out; existence and uniqueness theorems for solutions are proved; the critical loads at which the strings come into contact with the limiter are analyzed; an explicit formula for the representation of the solution is presented.
-
Рассматриваются постановка и тестовые решения задачи динамического взаимодействия твердых тел произвольной формы в рамках дискретно-элементного моделирования. При дискретизации используется описание тел произвольной формы, составленных из элементов-сфер, жестко связанных между собой. Агломераты строились на нескольких сетках с разной размерностью, что позволило оценить влияние параметров при построении агломератов сфер и гладкости получаемой поверхности. Представлена система уравнений движения агломерата сфер относительно глобальной системы координат, интегрирование которой выполняется на модифицированной схеме Верле. Силы взаимодействия между сферами определяются на основе контактной модели Герца-Миндлина с учетом вязкого демпфирования. Тестирование метода проводилось на задаче взаимодействия двух сфер. Вычислялись траектории движения сфер, представленные агломератом сферических частиц. Полученные результаты сравнивались со случаем движения и взаимодействия сфер в одночастичном приближении.
The paper deals with the statement of a problem of dynamic interaction of arbitrary solid bodies and its test solutions in the context of discrete element modeling. For discretization we use description of bodies with arbitrary shapes, composed of rigidly bound spheres. The clumps were built with different characteristics, which allowed to estimate their influence on the process of clump construction and the smoothness of obtained surface. A system of equations of motion relative to global axes for a clump of spheres is presented. The forces of interaction between the spheres are determined based on the Hertz-Mindlin contact model with due account for viscous damping. A problem of interaction of two spheres was chosen as a test case. Spheres' trajectories composed of clumps of spheres were calculated. The results were compared with the results for the case of motion and interaction of spheres in one-particle approximation.
-
В статье рассмотрены основные принципы постановок задач в механике твердого тела при наличии связей (с сухим трением и без). Основное внимание уделено предыстории начальных условий задачи, которая должна быть корректно определена таким образом, чтобы не требовалось введения дополнительных гипотез и допущений, выводящих исследование за рамки динамики твердого тела без ударов. Тогда динамика движения (и/или равновесия) твердых тел может быть описана однозначно и без каких-либо парадоксальных ситуаций (парадоксов Пэнлеве). Эта методика иллюстрируется на трех известных задачах механики: опирание твердого тела на одну точку при наличии сухого трения, движение стержня с ползунами в направляющих с сухим трением, опирание твердого тела на две точки с сухим трением («скамейка»).
On the settings of problems in dynamics of a rigid body with constraints and Painlev’e paradoxes, pp. 75-88We consider basic concepts for setting the problems of motion of a rigid body with constraints (with and without dry friction). The main accent is placed upon the prehistory of initial condition of a problems, which should be formulated in a correct manner which would not require introducing additional hypothesis and assumptions which make one to leave the frames of the rigid body dynamics without impacts. With such correct formulation, the dynamics of motion (or equilibrium) of rigid bodies can be described without occurence of some paradoxic situations (Painlev'e paradoxes). The presented methodology is illustrated by three well-known problems in mechanics: 1) rigid body with a single contact point with a surface in the presence of dry friction, 2) sliding bar in the sliding ways with dry friction, 3) rigid body with two point contact in the presence of dry friction («bench»).
-
Сани Чаплыгина с движущейся точечной массой, с. 583-589Неголономные механические системы возникают во многих задачах, имеющих практическое значение. Известной моделью в неголономной механике являются сани Чаплыгина. Сани Чаплыгина представляют собой твердое тело, опирающееся на поверхность острым невесомым колесом. Острый край колеса препятствует скольжению в направлении, перпендикулярном его плоскости. В данной работе рассмотрены сани Чаплыгина с изменяющимся со временем распределением масс, которое возникает за счет движения точки в поперечном относительно плоскости лезвия направлении. Получены уравнения движения, среди которых отделяется замкнутая система уравнений с периодическими по времени коэффициентами, описывающая эволюцию поступательной и угловой скорости саней. Показано, что если проекция центра масс всей системы на ось вдоль лезвия равна нулю, тогда поступательная скорость саней возрастает. При этом траектория точки контакта, как правило, является неограниченной.
A Chaplygin sleigh with a moving point mass, pp. 583-589Nonholonomic mechanical systems arise in the context of many problems of practical significance. A famous model in nonholonomic mechanics is the Chaplygin sleigh. The Chaplygin sleigh is a rigid body with a sharp weightless wheel in contact with the (supporting) surface. The sharp edge of the wheel prevents the wheel from sliding in the direction perpendicular to its plane. This paper is concerned with a Chaplygin sleigh with time-varying mass distribution, which arises due to the motion of a point in the direction transverse to the plane of the knife edge. Equations of motion are obtained from which a closed system of equations with time-periodic coefficients decouples. This system governs the evolution of the translational and angular velocities of the sleigh. It is shown that if the projection of the center of mass of the whole system onto the axis along the knife edge is zero, the translational velocity of the sleigh increases. The trajectory of the point of contact is, as a rule, unbounded.
-
Предложен новый итерационный метод решения статических контактных задач двух деформируемых тел, основанный на поочередном решении задачи одностороннего контакта для первого тела и задачи линейной теории упругости с естественными граничными условиями для второго тела. Выполнение условий закона трения Кулона достигнуто за счет коррекции касательных узловых сил в зоне скольжения и задания кинематических граничных условий в зоне сцепления на контактной границе первого тела. Постепенное выравнивание контактных нагрузок на взаимодействующих поверхностях осуществляется в процессе решения задачи линейной теории упругости для второго тела. Преимущества метода продемонстрированы на решении ряда модельных примеров, включая односторонний контакт линейно-упругой пластины с твердым основанием, двухсторонний контакт вдавливания деформируемого блока в основание, задачу Герца о контакте двух деформируемых цилиндров и др. Разработанный метод применим для решения контактных задач с плоскими и криволинейными границами взаимодействия.
A new iterative method for solving static contact problems of two deformable bodies is proposed. The method is based on alternately solving the unilateral contact problem for the first body and the linear elasticity problem with natural boundary conditions for the second body. Fulfillment of Coulomb's friction law involves correction of tangential nodal forces in the sliding area and setting kinematic boundary conditions in the sticking area for the contact boundary of the first body. The goal of solving the linear elasticity problem for the second body is to gradually equalize contact loads on the interacting surfaces. The advantages of the method are demonstrated by solving a number of model examples, including unilateral contact of a linear-elastic plate with a solid foundation, bilateral contact of pressing a deformable block into the foundation, the Hertz problem of contact of two deformable cylinders etc. The method can solve problems on flat and curvilinear contact boundaries.
-
Пошаговый контактный алгоритм на основе метода декомпозиции Шварца для деформируемых тел, с. 396-413Рассматривается построение и исследование неявных численных схем интегрирования задач динамического контактного взаимодействия двух контактирующих трехмерных тел без трения в рамках альтернирующего метода Шварца. Приводятся результаты тестирования контактного алгоритма декомпозиции Шварца с использованием схемы HTT-$\alpha$ в комбинации с методом перераспределения массы на границе области контакта.
Space semidiscrete formulation of contact algorithm based on the Schwarz's decomposition method for deformable bodies, pp. 396-413Implicit integration scheme for Schwarz alternating method for dynamic contact interaction problems of two interacting volumetric bodies without friction is considered. The paper presents the results of testing a contact algorithm of Schwarz domain decomposition using HTT-$\alpha$ scheme in consistent method redistribution of mass on the boundary of contact. To prevent artificial oscillations on the contact boundary together with common dissipative properties of the $\alpha$-scheme, the consistent mass redistribution method was used. The main advantage of this approach is the option to use multigrid methods to speed up the algorithm on subdomains, also there is no need for contact elements, contact parameters, Lagrange multipliers or regularization. Numerical examples including various contact zones, different materials of contact bodies and comparisons with measurements of other methods show the wide applicability of the derived algorithm.
-
Обсуждается классическая задача о движении тяжелого симметричного твердого тела (волчка) с неподвижной точкой на горизонтальной плоскости. Ввиду одностороннего характера контакта, при определенных условиях возможны отрывы (подскоки) волчка. Известно два сценария отрывов, связанных с переменой знака нормальной реакции либо знака нормального ускорения, причем несовпадение указанных условий приводит к парадоксам. Для выяснения природы парадоксов подробно изучен пример маятника (стержня) с учетом ограниченности реального коэффициента трения. Показано, что в случае парадокса первого типа (невозможен ни отрыв, ни продолжение контакта) тело начинает скользить по опоре. В случае парадокса второго типа (возможен как отрыв, так и сохранение контакта) контакт сохраняется вплоть до перемены знака нормальной реакции, а затем нормальное ускорение при отрыве отлично от нуля.
The classical problem about the motion of a heavy symmetric rigid body (top) with a fixed point on the horizontal plane is discussed. Due to the unilateral nature of the contact, detachments (jumps) are possible under certain conditions. We know two scenarios of detachment related to changing the sign of the normal reaction or the sign of the normal acceleration, and the mismatch of these conditions leads to a paradox. To determine the nature of paradoxes an example of the pendulum (rod) within the limitations of the real coefficient of friction was studied in detail. We showed that in the case of the first type of the paradox (detachment is impossible and contact is impossible) the body begins to slide on the support. In the case of the paradox of the second type (detachment is possible and contact is possible) contact is retained up to the sign change of the normal reaction, and then at the detachment the normal acceleration is non-zero.
-
Рассматривается задача о скольжении однородного прямого цилиндра произвольной формы (шайбы) по горизонтальной плоскости под действием сил сухого трения. Пятно контакта цилиндра с плоскостью совпадает с его основанием. Одной из центральных гипотез в работе является выбор математической модели взаимодействия малого элемента поверхности шайбы с плоскостью. Предполагается, что данное явление описывается законом сухого трения Амонтона–Кулона. В данной работе основное внимание уделено качественному анализу уравнений движения системы, который позволит описать динамику при малых значениях кинетической энергии системы (финальную динамику). Сформулированы и доказаны качественные свойства динамики произвольных шайб. Приведены примеры, показывающие различие финальной динамики шайб, опирающихся на шероховатую плоскость круглым основанием, центрально-симметричным и произвольной формы.
On free movement of puck on horizontal plane, pp. 125-139We consider the problem of a homogeneous direct cylinder of an arbitrary form (a puck) sliding on a horizontal surface under the action of dry friction forces. The surface contact spot of the cylinder coincides with its base. One of the central hypotheses in the work is the choice of a mathematical model of interaction between a small surface element of a puck and a plane. It is assumed, that the current effect is described by the Amonton–Coulomb’s law of friction. In the present work the basic attention is given to the qualitative analysis of the equations of motion for systems, the one which allow to describe dynamics at small values of the system’s kinetic energy (final dynamics). Qualitative properties of dynamics for arbitrary pucks are formulated and proved. We present examples illustrating the difference in final dynamics for pucks with round, centrosymmetrical and arbitrary bases on a rough surface.
-
В работе рассматривается задача программного управления движением динамически несимметричного уравновешенного шара на плоскости при помощи трех двигателей-маховиков при условии, что шар катится без проскальзывания. Центр масс механической системы совпадает с геометрическим центром шара. Найдены законы управления, обеспечивающие движение шара вдоль базовых траекторий (прямой и окружности), а также по произвольно заданной кусочно-гладкой траектории на плоскости. В данной работе предлагается кватернионная модель движения шара, которая позволяет обойтись без традиционного использования тригонометрических функций, а кинематические уравнения записать в виде линейных дифференциальных уравнений, исключающих недостатки связанные с применением углов Эйлера. Решение поставленной задачи осуществляется с применением кватернионной функции времени, которая определяется видом траектории и законом движения точки контакта шара с плоскостью. Приведен пример управления движением шара и выполнена визуализация движения системы шар-маховики в пакете компьютерной алгебры.
кватернионы, программное управление, неголономная связь, геометрическая динамика, плавное движение, сферо-роботThis paper deals with the problem of program control of the motion of a dynamically asymmetric balanced ball on the plane using three flywheel motors, provided that the ball rolls without slipping. The center of mass of the mechanical system coincides with the geometric center of the ball. Control laws are found to ensure the motion of the ball along the basic trajectories (line and circle), as well as along an arbitrarily given piecewise smooth trajectory on the plane. In this paper, we propose a quaternion model of ball motion. The model does not require using the traditional trigonometric functions. Kinematic equations are written in the form of linear differential equations eliminating the disadvantages associated with the use of Euler angles. The solution of the problem is carried out using the quaternion function of time, which is determined by the type of trajectory and the law of motion of the point of contact of the ball with the plane. An example of ball motion control is given and a visualization of the ball-flywheel system motion in a computer algebra package is presented.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.