Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'converging sequence.':
Найдено статей: 10
  1. Доказана теорема, вводящая эквивалентные определения для некоторых пределов сходящихся последовательностей в расширении Белла счетного дискретного пространства.

    The theorem is proved which gives equivalent definitions of some limits of convergent sequence in Bell’s compactification of countable discrete space.

  2. В работе рассматриваются вопросы, связанные со сходящимися последовательностями в $T_1$-пространствах. Свойства $T_1$-пространств, в том числе и сходимость последовательностей в них, отличаются от аналогичных свойств хаусдорфовых пространств, в частности, предел сходящейся последовательности может быть не единствен. Наиболее ярко эти особенности демонстрирует минимальное $T_1$-пространство. В работе рассматриваются вопросы, порожденные свойствами минимального $T_1$-пространства. Рассматриваются свойства пространств, в которых всякая последовательность является сходящейся (теоремы 1 и 2 и пример 1). Одной из основных является проблема связи между сходимостью последовательностей и свойствами подпространств. Хорошо известно, что компактность, счетная компактность и секвенциальная компактность не эквивалентны в общем случае. Однако, доказано (теорема 7), что наследственные секвенциальная компактность, счетная компактность и компактность эквивалентны.

    Gryzlov A.A., Tsigvintseva K.N.
    On convergent sequences and properties of subspaces, pp. 277-283

    We consider problems connected with the notion of convergent sequences in $T_1$-spaces. The properties of $T_1$-spaces and convergent sequences in these spaces considerably differ from the same properties of Hausdorff spaces. We consider problems connected with the properties of the minimal $T_1$-space. We consider properties of spaces where every sequence is a convergent sequence (Theorems 1 and 2 and Example 1). One of the main problems is the connection between convergent sequences and the properties of subspaces of the space. It is well known that the compactness, countable compactness and sequential compactness are not equivalent in general. We prove (Theorem 7) that hereditary sequential compactness, compactness and countable compactness are equivalent.

  3. Пусть $T_{\rho}$ — иррациональный поворот на единичной окружности $S^{1}\simeq [0,1)$. Рассмотрим последовательность $\{\mathcal{P}_{n}\}$ возрастающих разбиений на $S^{1}$. Определим время попадания $N_{n}(\mathcal{P}_n;x,y):= \inf \{ j\geq 1\mid T^{j}_{\rho}(y) \in P_{n}(x)\}$, где $P_{n}(x)$ — элемент разбиения $\mathcal{P}_{n}$, содержащий точку $x$. Д. Ким и Б. Сео [9] доказали, что время попадания $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ почти всюду (по мере Лебега) сходится к $\log2$, где последовательность разбиений $\{\mathcal{Q}_n\}$ порождена хаотическим отображением $f_{2}(x):=2x \bmod 1$. Хорошо известно, что отображение $f_{2}$ имеет положительную энтропию $\log2$. Возникает естественный вопрос о том, что если последовательность разбиений $\{\mathcal{P}_n\}$ порождена отображением с нулевой энтропией. В настоящей работе мы изучаем поведение $K_n(\tau_n;x,y)$ с последовательностью смешанных разбиений ${\tau_{n}}$ таких, что $\mathcal{Q}_{n}\cap [0,\frac{1}{2}]$ порождена отображением $f_{2}$, а $ \mathcal{D}_{n}\cap [\frac{1}{2},1]$ порождена иррациональным поворотом $T_{\rho}$. Доказано, что $K_n(\tau_n;x,y)$ почти всюду (по мере Лебега) сходится к кусочно-постоянной функции с двумя значениями. Также показано, что существуют некоторые иррациональные повороты, демонстрирующие различное поведение.

    Dzhalilov A.A., Khomidov M.K.
    Hitting functions for mixed partitions, pp. 197-211

    Let $T_{\rho}$ be an irrational rotation on a unit circle $S^{1}\simeq [0,1)$. Consider the sequence $\{\mathcal{P}_{n}\}$ of increasing partitions on $S^{1}$. Define the hitting times $N_{n}(\mathcal{P}_n;x,y):= \inf\{j\geq 1\mid T^{j}_{\rho}(y)\in P_{n}(x)\}$, where $P_{n}(x)$ is an element of $\mathcal{P}_{n}$ containing $x$. D. Kim and B. Seo in [9] proved that the rescaled hitting times $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ a.e. (with respect to the Lebesgue measure) converge to $\log2$, where the sequence of partitions $\{\mathcal{Q}_n\}$ is associated with chaotic map $f_{2}(x):=2x \bmod 1$. The map $f_{2}(x)$ has positive entropy $\log2$. A natural question is what if the sequence of partitions $\{\mathcal{P}_n\}$ is associated with a map with zero entropy. In present work we study the behavior of $K_n(\tau_n;x,y)$ with the sequence of mixed partitions $\{\tau_{n}\}$ such that $ \mathcal{P}_{n}\cap [0,\frac{1}{2}]$ is associated with map $f_{2}$ and $\mathcal{D}_{n}\cap [\frac{1}{2},1]$ is associated with irrational rotation $T_{\rho}$. It is proved that $K_n(\tau_n;x,y)$ a.e. converges to a piecewise constant function with two values. Also, it is shown that there are some irrational rotations that exhibit different behavior.

  4. Грызлов А.А., Головастов Р.А., Бастрыков Е.С.
    Произведения пространств и сходимость последовательностей, с. 563-570

    По теореме Хьюитта–Марчевского–Пондишери тихоновское произведение $2^\omega$ сепарабельных пространств сепарабельно. Мы продолжаем исследовать проблему существования в тихоновском произведении $\prod\limits_{\alpha\in 2^\omega}X_\alpha$ сепарабельных пространств плотного счетного подмножества, не содержащего нетривиальных сходящихся последовательностей. Мы говорим, что последовательность $\lambda=\{x_n\colon n\in\omega\}$ является простой, если для каждого $x_n\in\lambda$ множество $\{n'\in\omega\colon x_{n'}=x_n\}$ конечно. Мы доказываем, что в произведении $\{Z_\alpha\colon\alpha\in 2^\omega\}$ сепарабельных пространств, где всякое $Z_\alpha$ $(\alpha\in\omega)$ содержит простую несходящуюся последовательность, есть счетное плотное множество $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, которое не содержит нетривиальных сходящихся в $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ последовательностей.

    Gryzlov A.A., Golovastov R.A., Bastrykov E.S.
    Products of spaces and the convergence of sequences, pp. 563-570

    By the Hewitt–Marczewski–Pondiczery theorem, the Tychonoff product of $2^\omega$ separable spaces is separable. We continue to explore the problem of the existence in the Tychonoff product $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ of $2^\omega$ separable spaces a dense countable subset, which does not contain non-trivial convergent sequences. We say that a sequence $\lambda=\{x_n\colon n\in\omega\}$ is simple, if, for every $x_n\in\lambda$, a set $\{n'\in\omega\colon x_{n'}=x_n\}$ is finite. We prove that in the product of separable spaces $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, such that $Z_\alpha$ $(\alpha\in 2^\omega)$ contains a simple nonconvergent sequence, there is a countable dense set $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, which does not contain non-trivial convergent in $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ sequences.

  5. В данной работе рассматривается булева алгебра того же типа, что и алгебра, построенная Беллом, и пространство Стоуна этой булевой алгебры. Данное пространство является компактификацией счетного дискретного пространства N. Доказано существование изолированных точек в наросте данной компактификации, которые являются пределами некоторых сходящихся последовательностей. Также доказано, что любое открыто-замкнутое подмножество нашего пространства, которое гомеоморфно βω, является замыканием объединения конечного числа антицепей из N. В конце приведены два примера: замкнутое подмножество нароста без изолированных точек, которое не гомеоморфно βω\ω; подмножество нароста, которое гомеоморфно βω\ω, но не является замкнутым.

    Golovastov R.A.
    About Stone space of one Boolean algebra, pp. 19-24

     

    We consider the Boolean algebra of the same type as algebra constructed by Bell, and the Stone space of this Boolean algebra. This space is a compactification of a countable discrete space N. We prove that there are isolated points in a remainder of this compactification, which are limits of some convergent sequences. We prove that a clopen subset of our space, which is homeomorphic to βω, is a closure of the union of finitely many antichains from N. We construct two examples: a clopen subset of the remainder without isolated points, which is not homeomorphic to βω\ω; a subset of the remainder which is homeomorphic to βω\ω, but is not a clopen.

     

  6. Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,Ln. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса yE. Критерий аппроксимации  минимум величины ||yŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами αωSEn+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора yE есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.

     

    Some properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients  αωSEn+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.

     

  7. Решаются вопросы, связанные с замыканием счётных подмножеств пространства Стоуна одной булевой алгебры, являющегося компактификацией счётного дискретного пространства. Показано существование сходящихся последовательностей в наросте этого расширения.

    We consider closures of countable subsets of Stone space of one Boolean algebra, which is a compactification of a countable discrete space. We prove the existence of converging sequences in a remainder of this compactification.

  8. Рассматриваются всюду плотные подмножества произведений топологических пространств. Доказано, что в произведении $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ где $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ сепарабельных пространств существуют счетные всюду плотные множества такие, что всякие счетные их подмножества имеют проекции на грани, обладающие дополнительными свойствами. Это позволяет доказать ряд фактов о всюду плотных множествах, в частности отсутствие сходящихся последовательностей, оценивать характер замкнутых подмножеств произведений.

    Gryzlov A.A.
    On projections of products of spaces, pp. 409-413

    We consider dense sets of products of topological spaces. We prove that in the product $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ where $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ there are dense sets such that their countable subsets have projections with additional properties. These properties entail that these dense sets contain no convergent sequences. By these properties we prove that the character of closed sets of the product is uncountable.

  9. В настоящей статье мы излагаем новое понятие квазистатистически грубой сходимости в градуальных нормированных линейных пространствах. Мы устанавливаем важные результаты, которые представляют несколько фундаментальных свойств этого нового понятия. Мы также вводим понятие $st_{q}^{r}(\mathcal{G})$-предельного множества и доказываем, что оно градуально замкнуто, выпукло и играет важную роль для квазистатистической ограниченности последовательности в градуальном нормированном линейном пространстве.

    In the present article, we set forth with the new notion of quasi statistically rough convergence in the gradual normed linear spaces. We establish significant results that present several fundamental properties of this new notion. We also introduce the notion of $st_{q}^{r}(\mathcal{G})$-limit set and prove that it is gradually closed, convex, and plays an important role for the quasi statistically boundedness of a sequence in a gradual normed linear space.

  10. Пусть $H$ - гильбертово пространство и (необязательно ограниченная) последовательность $\{e_n\}_{n=1}^{\infty}$ его элементов содержит ограниченную подпоследовательность $\{e_{n_k}\}_{k=1}^{\infty}$ такую, что $|(e_{n_k},e_{n_m})| \geqslant \alpha > 0$ для любых достаточно больших $k,m \in N, k \neq m$. Доказано, что такая последовательность $\{e_n\}_{n=1}^{\infty}$ не является базисной последовательностью и, следовательно, базисом Шаудера в пространстве $H$. Полученные результаты обобщают и предлагают короткое и более простое доказательство некоторых недавних результатов, полученных в этом направлении.

    Let $H$ be a Hilbert space and a (not necessarily bounded) sequence of its elements $\{e_n\}_{n=1}^{\infty}$ has a bounded subsequence $\{e_{n_k}\}_{k=1}^{\infty}$ such that $|(e_{n_k},e_{n_m})| \geqslant \alpha > 0$ for all sufficiently large $k,m \in N, k \neq m$. It is proved that such a sequence $\{e_n\}_{n=1}^{\infty}$ is not a basic sequence and thus is not a Schauder basis in $H$. Note that the results of this paper generalize and offer a short and more simple proof of some recent results obtained in this direction.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref