Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Предложен подход к получению точных решений неоднородных дифференциальных уравнений в частных производных. Показано, что если правая часть уравнения задает поверхность уровня для решения уравнения, то в рамках этого подхода поиск решений рассматриваемого неоднородного уравнения сводится к решению обыкновенного дифференциального уравнения (ОДУ). В противном случае поиск решений уравнения приводит к решению системы ОДУ. Получение системы ОДУ опирается на наличие в рассматриваемом уравнении первых производных от искомой функции. Для уравнений в частных производных, которые явно не содержат первые производные искомой функции, предложена подстановка, позволяющая получить такие члены в уравнении. Чтобы свести исходное уравнение, содержащее первые производные от искомой функции, к системе ОДУ, рассматривается связанная с ним система двух уравнений в частных производных. Первое уравнение системы содержит в левой части частные производные только первого порядка, выбранные из исходного уравнения, в правой части - произвольную функцию, аргументом которой является искомая функция. Второе уравнение содержит члены исходного уравнения, не вошедшие в первое уравнение системы, и правую часть первого уравнения формируемой системы. Решение исходного уравнения сводится к поиску решения первого уравнения полученной системы уравнений в частных производных, обращающего в тождество второе уравнение системы. Такое решение удается найти, используя расширенную систему уравнений характеристик для первого уравнения и произвол в выборе функции из правой части этого уравнения. Описанный подход применен для получения некоторых точных решений уравнения Пуассона, уравнения Монжа-Ампера и уравнения конвекции-диффузии.
An approach to obtaining exact solutions for nonhomogeneous partial differential equations (PDEs) is suggested. It is shown that if the right-hand side of the equation specifies the level surface of a solution of the equation, then, in this approach, the search of solutions of considered nonhomogeneous differential equations is reduced to solving ordinary differential equation (ODE). Otherwise, searching for solutions of the equation leads to solving the system of ODEs. Obtaining a system of ODEs relies on the presence of the first derivatives of the sought function in the equation under consideration. For PDEs, which do not explicitly contain first derivatives of the sought function, substitution providing such terms in the equation is proposed. In order to reduce the original equation containing the first derivative of the sought function to the system of ODEs, the associated system of two PDEs is considered. The first equation of the system contains in the left-hand side only first order partial derivatives, selected from the original equation, and in the right-hand side it contains an arbitrary function, the argument of which is the sought unknown function. The second equation contains terms of the original equation that are not included in the first equation of the system and the right-hand side of the first equation in the system created. Solving the original equation is reduced to finding the solutions of the first equation of the resulting system of equations, which turns the second equation of the system into identity. It has been possible to find such solution using extended system of equations for characteristics of the first equation and the arbitrariness in the choice of function from the right-hand side of the equation. The described approach is applied to obtain some exact solutions of the Poisson equation, Monge-Ampere equation and convection–diffusion equation.
-
Предмет изучения - псевдовершины краевого множества, необходимые для аналитического и численного конструирования сингулярных ветвей обобщенного (минимаксного) решения задачи Дирихле для уравнения типа эйконала. Рассмотрен случай переменной гладкости границы краевого множества, при котором порядок гладкости в точках рассмотрения понижается до минимально возможного значения - до единицы. Получены необходимые условия существования псевдовершин, выраженные в терминах односторонних частичных пределов дифференциальных соотношений, зависящих от свойств локальных диффеоморфизмов, которые определяют эти точки. Приведен пример, иллюстрирующий приложения полученных результатов при решении задачи управления по быстродействию на плоскости.
уравнение в частных производных первого порядка, минимаксное решение, быстродействие, волновой фронт, диффеоморфизм, эйконал, функция оптимального результата, сингулярное множество, симметрия, псевдовершинаThe subject of the study is pseudo-vertices of a boundary set, which are necessary for the analytical and numerical construction of singular branches of the generalized (minimax) solution of the Dirichlet problem for an eikonal type equation. The case of variable smoothness of the boundary set boundary is considered, under which the order of smoothness at the points of consideration is reduced to the lowest possible value - up to one. Necessary conditions for the existence of pseudo-vertices are obtained, expressed in terms of one-sided partial limits of differential relations, depending on the properties of local diffeomorphisms that determine these points. An example is given that illustrates the application of the results obtained while solving the velocity problem.
-
Начально-краевая задача для уравнений динамики вращающейся вязкой стратифицированной жидкости, с. 625-641В работе рассматривается задача о малых движениях вязкой стратифицированной жидкости, частично заполняющей контейнер, который равномерно вращается вокруг оси, сонаправленной с действием силы тяжести. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Исходная начально-краевая задача сводится к задаче Коши для дифференциального уравнения первого порядка в некотором гильбертовом пространстве. После детального изучения свойств операторных коэффициентов доказана теорема о разрешимости полученной задачи Коши. На этой основе найдены достаточные условия существования решения начально-краевой задачи, описывающей эволюцию исходной гидросистемы.
эффект стратификации в вязких жидкостях, дифференциальное уравнение в гильбертовом пространстве, задача Коши
Initial-boundary value problem for the equations of dynamics of a rotating viscous stratified fluid, pp. 625-641We study the problem of small motions of a viscous stratified fluid partially filling a container that uniformly rotates around an axis co-directed by gravity. The problem is studied on the basis of an approach related to the application of the so-called operator matrix theory. To this end, we introduce Hilbert spaces and some their subspaces, as well as auxiliary boundary value problems. The original initial-boundary value problem is reduced to the Cauchy problem for a first-order differential equation in some Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the solvability of the Cauchy problem. On this basis, we find sufficient conditions for the existence of a solution of the original initial-boundary value problem describing the evolution of the hydro-system.
-
Рассматривается уравнение в частных производных первого порядка с эффектом наследственности:
$$ \frac{\partial u(x,t)}{\partial t} + a \frac{\partial u(x,t)}{\partial x} = f ( x, t, u(x,t), u_t(x,\cdot)),$$ $$u_t(x,\cdot) = \{u(x,t+s), -\tau\leqslant s <0\}.$$
Для такого уравнения, с позиций принципа разделения конечномерной и бесконечномерной составляющих состояния, строятся сеточные методы: аналог семейства схем бегущего счета, аналог схемы Кранка-Николсон, метод аппроксимации на середину квадрата. Для учета эффекта наследственности применяются одномерная и двойная кусочно-линейная интерполяции и экстраполяция продолжением. Доказывается, что рассмотренные методы имеют порядки локальной погрешности: соответственно $O(h+\Delta)$, $O(h+\Delta^2)$ и $O(h^2+\Delta^2)$, где $h$ - шаг дискретизации по пространственной переменной, $\Delta$ - шаг дискретизации по временной переменной. Исследуются свойства двойной кусочно-линейной интерполяции. Используя результаты общей теории разностных схем, установлены условия устойчивости предложенных методов. С помощью вложения в общую схему численных методов для функционально-дифференциальных уравнений получены теоремы о порядках сходимости сконструированных алгоритмов. Приведены тестовые примеры по сравнению погрешностей методов.
уравнение переноса, запаздывание, сеточные схемы, интерполяция, экстраполяция, устойчивость, порядок сходимостиWe consider a first-order partial differential equation with heredity effect
$$ \frac{\partial u(x,t)}{\partial t} + a \frac{\partial u(x,t)}{\partial x} = f ( x, t, u(x,t), u_t(x,\cdot)),$$ $$u_t(x,\cdot) = \{u(x,t+s), -\tau\leqslant s <0\}.$$
For such an equation we construct grid methods using the principle of separation of finite-dimensional and infinite-dimensional state components. These grid methods are: analog of running schemes family, analog of Crank-Nicolson scheme, an approximation method to the middle of the square. The one-dimensional and double piecewise linear interpolation and the extrapolation by continuation are applied in order to account the effect of heredity. It is shown that the considered methods have orders of a local error: $O (h +\Delta) $, $O (h +\Delta^2) $ and $O (h^2 +\Delta^2)$ respectively, where $h$ is the spatial discretization interval, $\Delta$ is the time discretization interval. Properties of double piecewise linear interpolation are investigated. Using the results of the general theory of differential schemes, stability conditions of the proposed methods are established. Including them in the general scheme of numerical methods for the functional-differential equations, theorems of orders of proposed algorithms convergence are received. Test examples comparing errors of methods are given.
-
К решению неоднородных уравнений в частных производных с правой частью, заданной на сетке, с. 443-457Предлагается алгоритм получения решения уравнений в частных производных с правой частью, заданной на сетке $\{ (x_{1})_{\mu}, (x_{2})_{\mu}, \ldots, (x_{n})_{\mu}\},$ $(\mu=1,2,\ldots,N)\colon f_{\mu}=f((x_{1})_{\mu}, (x_{2})_{\mu}, \ldots, (x_{n})_{\mu}).$ Здесь $n$ — число независимых переменных в исходном уравнении в частных производных, $N$ — число строк в сетке для правой части, $f=f( x_{1}, x_{2}, \ldots, x_{n})$ — правая часть исходного уравнения. Алгоритм реализует редукцию исходного уравнения к системе обыкновенных дифференциальных уравнений (системе ОДУ) с начальными условиями в каждой точке сетки и включает следующую последовательность действий. Ищется решение исходного уравнения, зависящее от одной независимой переменной. Исходному уравнению ставится в соответствие некоторая система соотношений, содержащая произвольные функции и включающая уравнение в частных производных первого порядка. Для уравнения первого порядка выписывается расширенная система уравнений характеристик. Присоединяя к ней остальные соотношения, содержащие произвольные функции, и требуя, чтобы эти соотношения были первыми интегралами расширенной системы уравнений характеристик, приходим к искомой системе ОДУ, завершая редукцию. Предлагаемый алгоритм позволяет в каждой точке сетки находить решение исходного уравнения в частных производных, удовлетворяющее заданным начальным и краевым условиям. Алгоритм применяется для получения решений уравнения Пуассона и уравнения нестационарной осесимметричной фильтрации в точках сетки, на которой заданы правые части соответствующих уравнений.
уравнения в частных производных, решение начальных и краевых задач, расширенная система уравнений характеристик, редукция уравнений в частных производных к системам ОДУ
On solving non-homogeneous partial differential equations with right-hand side defined on the grid, pp. 443-457An algorithm is proposed for obtaining solutions of partial differential equations with right-hand side defined on the grid $\{ x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}\},\ (\mu=1,2,\ldots,N)\colon f_{\mu}=f(x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}).$ Here $n$ is the number of independent variables in the original partial differential equation, $N$ is the number of rows in the grid for the right-hand side, $f=f( x_{1}, x_{2}, \ldots, x_{n})$ is the right-hand of the original equation. The algorithm implements a reduction of the original equation to a system of ordinary differential equations (ODE system) with initial conditions at each grid point and includes the following sequence of actions. We seek a solution to the original equation, depending on one independent variable. The original equation is associated with a certain system of relations containing arbitrary functions and including the partial differential equation of the first order. For an equation of the first order, an extended system of equations of characteristics is written. Adding to it the remaining relations containing arbitrary functions, and demanding that these relations be the first integrals of the extended system of equations of characteristics, we arrive at the desired ODE system, completing the reduction. The proposed algorithm allows at each grid point to find a solution of the original partial differential equation that satisfies the given initial and boundary conditions. The algorithm is used to obtain solutions of the Poisson equation and the equation of unsteady axisymmetric filtering at the points of the grid on which the right-hand sides of the corresponding equations are given.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.