Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Пусть $T_{\rho}$ — иррациональный поворот на единичной окружности $S^{1}\simeq [0,1)$. Рассмотрим последовательность $\{\mathcal{P}_{n}\}$ возрастающих разбиений на $S^{1}$. Определим время попадания $N_{n}(\mathcal{P}_n;x,y):= \inf \{ j\geq 1\mid T^{j}_{\rho}(y) \in P_{n}(x)\}$, где $P_{n}(x)$ — элемент разбиения $\mathcal{P}_{n}$, содержащий точку $x$. Д. Ким и Б. Сео [9] доказали, что время попадания $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ почти всюду (по мере Лебега) сходится к $\log2$, где последовательность разбиений $\{\mathcal{Q}_n\}$ порождена хаотическим отображением $f_{2}(x):=2x \bmod 1$. Хорошо известно, что отображение $f_{2}$ имеет положительную энтропию $\log2$. Возникает естественный вопрос о том, что если последовательность разбиений $\{\mathcal{P}_n\}$ порождена отображением с нулевой энтропией. В настоящей работе мы изучаем поведение $K_n(\tau_n;x,y)$ с последовательностью смешанных разбиений ${\tau_{n}}$ таких, что $\mathcal{Q}_{n}\cap [0,\frac{1}{2}]$ порождена отображением $f_{2}$, а $ \mathcal{D}_{n}\cap [\frac{1}{2},1]$ порождена иррациональным поворотом $T_{\rho}$. Доказано, что $K_n(\tau_n;x,y)$ почти всюду (по мере Лебега) сходится к кусочно-постоянной функции с двумя значениями. Также показано, что существуют некоторые иррациональные повороты, демонстрирующие различное поведение.
Hitting functions for mixed partitions, pp. 197-211Let $T_{\rho}$ be an irrational rotation on a unit circle $S^{1}\simeq [0,1)$. Consider the sequence $\{\mathcal{P}_{n}\}$ of increasing partitions on $S^{1}$. Define the hitting times $N_{n}(\mathcal{P}_n;x,y):= \inf\{j\geq 1\mid T^{j}_{\rho}(y)\in P_{n}(x)\}$, where $P_{n}(x)$ is an element of $\mathcal{P}_{n}$ containing $x$. D. Kim and B. Seo in [9] proved that the rescaled hitting times $K_n(\mathcal{Q}_n;x,y):= \frac{\log N_n(\mathcal{Q}_n;x,y)}{n}$ a.e. (with respect to the Lebesgue measure) converge to $\log2$, where the sequence of partitions $\{\mathcal{Q}_n\}$ is associated with chaotic map $f_{2}(x):=2x \bmod 1$. The map $f_{2}(x)$ has positive entropy $\log2$. A natural question is what if the sequence of partitions $\{\mathcal{P}_n\}$ is associated with a map with zero entropy. In present work we study the behavior of $K_n(\tau_n;x,y)$ with the sequence of mixed partitions $\{\tau_{n}\}$ such that $ \mathcal{P}_{n}\cap [0,\frac{1}{2}]$ is associated with map $f_{2}$ and $\mathcal{D}_{n}\cap [\frac{1}{2},1]$ is associated with irrational rotation $T_{\rho}$. It is proved that $K_n(\tau_n;x,y)$ a.e. converges to a piecewise constant function with two values. Also, it is shown that there are some irrational rotations that exhibit different behavior.
-
В работе вводится понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Показано, что всякая функция, заданная и непрерывная на замыкании $X$ открытого ограниченного множества $X_0\subseteq\mathbb R^n$, является правильной (принадлежит пространству $\langle{\rm G(}X),\|\cdot\|\rangle$). Доказана полнота пространства ${\rm G}(X)$ по $\sup$-норме $\|\cdot\|$. Оно является замыканием пространства ступенчатых функций. Во второй части работы определено и исследовано пространство ${\rm G}^J(X)$, отличающееся от пространства ${\rm G}(X)$ тем, что в его определении вместо разбиений используются $J$-разбиения, элементы которых — измеримые по Жордану открытые множества. Перечисленные выше свойства пространства ${\rm G}(X)$ переносятся на пространство ${\rm G}^J(X)$. В заключительной части работы определено понятие $J$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по Жордану замыкание открытого ограниченного множества $X_0\subseteq\mathbb R^n$, а функция $f\colon X\to\mathbb R$ интегрируема по Риману, то она $J$-интегрируема. При этом значения интегралов совпадают. Все функции $f\in{\rm G}^J(X)$ являются $J$-интегрируемыми.
On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral, pp. 387-401The paper introduces the concept of a regulated function of several variables $f\colon X\to\mathbb R$, where $X\subseteq \mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\subseteq\mathbb R^n$, is regulated (belongs to the space $\langle{\rm G(}X),\|\cdot\ |\rangle$). The completeness of the space ${\rm G}(X)$ in the $\sup$-norm $\|\cdot\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\rm G}^J(X)$ is defined and studied, which differs from the space ${\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\rm G}(X)$ listed above carry over to the space ${\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\subseteq\mathbb R^n$, and the function $f\colon X\to\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\in{\rm G}^J(X)$ are $J$-integrable.
-
О банаховых пространствах правильных функций многих переменных. Аналог интеграла Римана–Стилтьеса, с. 182-203В предыдущей работе авторов введено понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Пространство ${\mathrm G}(X)$ таких функций банахово по $\sup$-норме и является замыканием пространства ступенчатых функций. В настоящей работе определено и исследовано пространство ${\mathrm G}^F(X)$, отличающееся от ${\mathrm G}(X)$ тем, что здесь в определении правильных функций многих переменных вместо специальных разбиений фигурируют $F$-разбиения: их элементами являются измеримые по обобщенной мере Жордана (по мере $m_{_{\!F}}$) непустые открытые множества. (Через $F$ обозначена функция, порождающая меру $m_{_{\!F}}$.) Во второй части работы определено понятие $F$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по мере $m_{_{\!F}}$ замыкание непустого открытого ограниченного множества $X_0\subseteq{\mathbb R}^n$, а функция $f\colon X\to {\mathbb R}$ интегрируема в смысле Римана–Стилтьеса относительно меры $m_{_{\!F}}$, то она $F$-интегрируема. При этом значения кратных интегралов совпадают. Все функции из пространства ${\mathrm G}^F(X)$ являются $F$-интегрируемыми. Доказаны основные свойства $F$-интеграла Римана–Стилтьеса.
On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral, pp. 182-203In the previous work of the authors, the concept of a regulated function of several variables $f\colon X\to\mathbb R$ was introduced, where $X\subseteq \mathbb R^n.$ The definition is based on the concept of a special partition of the set $X$ and the concept oscillation of the function $f$ on the elements of the partition. The space ${\rm G}(X)$ of such functions is Banach in the $\sup$-norm and is the closure of the space of step functions. In this paper, the space ${\rm G}^F(X)$ is defined and studied, which differs from ${\rm G}(X)$ in that here, in defining regulated functions of several variables, instead of special partitions, $F$-partitions are used: their elements are non-empty open sets measurable by the generalized Jordan measure (by the measure $m_{_{\!F}}$). (Symbol $F$ denotes the function generating the measure $m_{_{\!F}}.$) In the second part of the work, the concept of $F$-integrability of functions of several variables is defined. It is proved that if $X$ is the closure of a non-empty open bounded set $X_0\subseteq {\mathbb R}^n,$ measurable with respect to measure $m_{_{\!F}},$ and the function $f\colon X\to {\mathbb R}$ is integrable in the Riemann–Stieltjes sense with respect to the measure $m_{_{\!F}}$, then it is $F$-integrable. In this case, the values of the multiple integrals coincide. All functions from the space ${\rm G}^F(X)$ are $F$-integrable. The main properties of the Riemann–Stieltjes $F$-integral are proved.
-
Определена конформная связность со скалярной кривизной как обобщение псевдориманова пространства постоянной кривизны. Вычислена матрица кривизны такой связности. Доказано, что на многообразии конформной связности со скалярной кривизной имеется конформная связность с нулевой матрицей кривизны. Дано определение перенормируемого скаляра и доказано существование перенормируемых скаляров на любом многообразии конформной связности, где существует разбиение единицы. Доказано: 1) существование на многообразии конформной связности с нулевой матрицей кривизны конформной связности с положительной, отрицательной и знакопеременной скалярной кривизной; 2) существование на многообразии конформной связности глобальной калибровочно-инвариантной метрики; 3) на гиперповерхности конформного пространства индуцированная конформная связность не может быть с ненулевой скалярной кривизной.
многообразие конформной связности, матрица связности, матрица кривизны связности, калибровочные преобразования, перенормируемый скаляр, конформная связность со скалярной кривизной, разбиение единицы, калибровочно-инвариантная метрика
Conformal connection with scalar curvature, pp. 22-35A conformal connection with scalar curvature is defined as a generalization of a pseudo-Riemannian space of constant curvature. The curvature matrix of such connection is computed. It is proved that on a conformally connected manifold with scalar curvature there is a conformal connection with zero curvature matrix. We give a definition of a rescalable scalar and prove the existence of rescalable scalars on any manifold with conformal connection where a partition of unity exists. It is proved: 1) on any manifold with conformal connection and zero curvature matrix there exists a conformal connection with positive, negative and alternating scalar curvature; 2) on any conformally connected manifold there exists a global gauge-invariant metric; 3) on a hypersurface of a conformal space the induced conformal connection can not be of nonzero scalar curvature.
-
Динамика оптимального поведения двухвидового сообщества с учетом внутривидовой конкуренции и миграции, с. 518-531Рассматриваются некоторые задачи теории оптимального фуражирования, а именно, задачи выбора популяцией хищника участка, пригодного для питания, и нахождения условий ухода из него. Динамика взаимодействия хищника и жертвы задается системой Лотки-Вольтерры, в которой учтена внутривидовая конкуренция особей жертвы и возможность миграции особей хищника и жертвы. В процессах взаимодействия и миграции участвуют некоторые доли популяций. Решается задача нахождения оптимальных с точки зрения равновесия по Нэшу долей. При этом получено разбиение фазового пространства системы на области с различным поведением популяций. Исследуются оптимальные траектории соответствующей динамической системы с переменной структурой, их поведение на границах разбиения фазового пространства. Найдены положения равновесия и доказана их глобальная устойчивость при определенных ограничениях на параметры системы. В одном из случаев взаимоотношения между параметрами исследование качественного поведения оптимальных траекторий приводит к задаче о существовании предельных циклов. При этом дана оценка соответствующей области притяжения равновесия.
оптимальная динамика, внутривидовая конкуренция, миграция, глобальная устойчивость, равновесие по Нэшу
Optimal behavior dynamics of the two-species community with intraspecific competition and migration, pp. 518-531Some problems of the theory of optimal foraging are considered, namely, the problem of predator's choice of the most suitable patch and finding conditions for leaving it. The dynamics of the interaction between the predator and the prey is determined by the Lotka-Volterra system, which takes into account the intraspecific competition of the prey and the possibility of migration of the predator and the prey. Some fractions of populations participate, in the processes of interaction and migration. The problem of finding optimal shares from the point of view of Nash equilibrium is solved. In this case, a partition of the phase space of the system into domains with different behavior of the populations was obtained. We study the optimal trajectories of the corresponding dynamical system with a variable structure, their behavior on the boundaries of the phase space partition. The equilibrium positions are found and their global stability is proved under certain restrictions on the system parameters. In one of the cases of the relationship between the parameters, the study of the qualitative behavior of the optimal trajectories gives rise to the problem of the existence of limit cycles. In this case, an estimate of the corresponding domain of attraction of equilibrium is given.
-
Рассматриваются два способа биркгофовой интерполяции функции двух переменных многочленами второй степени на треугольнике для метода конечных элементов. Оценки погрешности для одного из предложенных параболических элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок.
This paper is devoted to analysing the interpolation of the function of two variables by a parabolic polynomial on a triangle for the finite element method. The estimates of error for a given piecewise parabolic polynomial depend only on the diameter of restricted partition and don't depend on the angles of triangulation.
-
О предельных циклах, резонансных и гомоклинических структурах в асимметричном уравнении маятникового типа, с. 228-244Рассматриваются периодические по времени возмущения асимметричного уравнения маятникового типа, близкого к интегрируемому стандартному уравнению математического маятника. Для автономного уравнения решается проблема предельных циклов, которая сводится к исследованию порождающих функций Пуанкаре-Понтрягина. Строится разбиение плоскости параметров на области с разным поведением фазовых кривых. Даются основные фазовые портреты для каждой области полученного разбиения. Для неавтономного уравнения изучается вопрос о структуре резонансных зон, к которому приводит решение задачи о синхронизации колебаний. Вычисляются усредненные уравнения маятникового типа, описывающие поведение решений исходного уравнения в индивидуальных резонансных зонах, и проводится их анализ. Устанавливается глобальное поведение решений в ячейках, не содержащих малых окрестностей невозмущенных сепаратрис. С помощью аналитического метода Мельникова и численного моделирования изучаются основные бифуркации неавтономного уравнения, связанные с возникновением негрубых гомоклинических кривых. На плоскости основных параметров строится бифуркационная диаграмма для отображения Пуанкаре, порожденного исходным уравнением, описывающая различные типы гомоклинических касаний сепаратрис седловой неподвижной точки. Обнаруживаются гомоклинические зоны (те области параметров, для которых существуют гомоклинические траектории к седловой неподвижной точки) с негладкими бифуркационными границами.
On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation, pp. 228-244Time-periodic perturbations of an asymmetric pendulum-type equation close to an integrable standard equation of a mathematical pendulum are considered. For an autonomous equation, the problem of limit cycles, which reduces to the study of the Poincaré-Pontryagin generating functions, is solved. A partition of the parameter plane into domains with different behavior of the phase curves is constructed. Basic phase portraits for each domain of the obtained partition are given. For a nonautonomous equation, the question of the structure of the resonance zones, to which the solution of the problem of synchronization of oscillations leads, is studied. Averaged equations of the pendulum type, describing the behavior of solutions of the original equation in individual resonance zones, are calculated and analyzed. The global behavior of solutions in cells that do not contain small neighborhoods of unperturbed separatrices is ascertained. Using the analytical Melnikov method and numerical modeling, the basic bifurcations of the nonautonomous equation associated with the appearance of nonrough homoclinic curves are studied. On the plane of the main parameters, a bifurcation diagram for the Poincaré map generated by the original equation, describing different types of homoclinic tangencies of the separatrices of the saddle fixed point, is constructed. Homoclinic zones (those domains of parameters for which homoclinic trajectories to the saddle fixed point exist) with nonsmooth bifurcation boundaries are found.
-
Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве и на конечном промежутке времени, зависящая от параметра. Изучаются множества достижимости и интегральные воронки дифференциального включения, соответствующего управляемой системе, содержащей параметр. При исследовании многочисленных задач теории управления и дифференциальных игр, конструировании их решений и оценивании погрешностей применяются различные теоретические подходы и ассоциированные с ними вычислительные методы. К упомянутым задачам принадлежат, например, различного рода задачи о сближении, разрешающие конструкции которых могут быть описаны достаточно просто в терминах множеств достижимости и интегральных воронок. В настоящей работе изучается зависимость множеств достижимости и интегральных воронок от параметра: оценивается степень этой зависимости от параметра при определенных условиях на управляемую систему. Степень зависимости интегральных воронок исследована на предмет изменения их объема при варьировании параметра. Для оценки этой зависимости вводятся системы множеств в фазовом пространстве, аппроксимирующие множества достижимости и интегральные воронки на заданном промежутке времени, отвечающие конечному разбиению этого промежутка. При этом сначала оценивается степень зависимости аппроксимирующей системы множеств от параметра, и затем эта оценка используется при оценке зависимости объема интегральной воронки дифференциального включения от параметра. Такой подход естественен и особенно полезен при изучении конкретных прикладных задач управления, при решении которых в конечном итоге приходится иметь дело не с идеальными множествами достижимости и интегральными воронками, а с их аппроксимациями, отвечающими дискретному представлению временного промежутка.
управляемые нелинейные системы, дифференциальные включения, множества достижимости, зависимость от параметра, объем интегральной воронки, дискретная аппроксимация
On the parametric dependence of the volume of integral funnels and their approximations, pp. 447-462We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval, which depends on a parameter. Reachable sets and integral funnels of a differential inclusion corresponding to a control system containing a parameter are studied. When studying numerous problems of control theory and differential games, constructing their solutions and estimating errors, various theoretical approaches and associated computational methods are used. The problems mentioned above include, for example, various types of approach problems, the resolving constructions of which can be described quite simply in terms of reachable sets and integral funnels. In this paper, we study the dependence of reachable sets and integral funnels on a parameter: the degree of this dependence on a parameter is estimated under certain conditions on the control system. The degree of dependence of the integral funnels is investigated for the change in their volume with a change in the parameter. To estimate this dependence, systems of sets in the phase space are introduced that approximate the reachable sets and integral funnels on a given time interval corresponding to a finite partition of this interval. In this case, the degree of dependence of the approximating system of sets on the parameter is first estimated, and then this estimate is used in estimating the dependence of the volume of the integral funnel of the differential inclusion on the parameter. This approach is natural and especially useful in the study of specific applied control problems, in solving which, in the end, one has to deal not with ideal reachable sets and integral funnels, but with their approximations corresponding to a discrete representation of the time interval.
-
Оболочечный аналог теоремы о пяти моментах, с. 100-106Полученный ранее для длинной многоопорной цилиндрической оболочки аналог балочной теоремы о трех моментах, основанный на замечательных свойствах простого краевого эффекта, обобщается на случай упругоподатливых опор в виде так называемого оболочечного аналога теоремы о пяти моментах.
теоремы о трех и пяти моментах, расчленение напряженно-деформированного состояния, реакции опор, балка, оболочка, температурный перепад.In this paper we generalize the analogue of the three-moment theorem in the theory of shells, which has been earlier obtained for the long cylindrical shell with several supports, to the case of flexible supports as a so-called "shell" analogue of the five-moment theorem.
-
Обсуждается проблема выбора граничных условий в случае численного интегрирования уравнений мелкой воды на существенно неоднородном рельефе местности. При моделировании нестационарных течений поверхностных вод имеется динамическая граница, разделяющая жидкость и сухое дно. Для задач сезонных пойменных затоплений, ливневых паводков, выходов волн цунами на берег ситуация осложняется возникновением до- и сверхкритических режимов течений. Анализ использования различных способов задания условий для физических величин при достижении жидкости границы расчетной области показывает преимущества при использовании условий типа «водопад» при наличии сильных неоднородностей рельефа земной поверхности. При наличии водопада на границе расчетной области и неоднородности рельефа в окрестности границы может возникать участок, на котором формируется область критического течения с образованием гидравлического скачка, что существенно ослабляет влияние водопада на структуру потока вверх по течению.
The problem of choice of boundary conditions is discussed for the case of numerical integration of the shallow water equations on a substantially irregular relief. While modeling unsteady surface water flows there is a dynamic boundary that partitions liquid and dry bottom. The situation is complicated by the emergence of sub- and supercritical flow regimes for the problems of seasonal floodplain flooding, flash floods, tsunami landfalls. Analysis of the use of various methods of setting conditions for the physical quantities of liquid at the settlement of the boundary shows the advantages of using the waterfall type conditions in the presence of strong heterogeneities of landforms. When there is a waterfall on the border of computational domain and heterogeneity of the relief in the vicinity of the boundary, a portion may occur which is formed by the region of critical flow with the formation of a hydraulic jump, which greatly weakens the effect of the waterfall on the flow pattern upstream.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.