Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Независимость оценок погрешности интерполяции многочленами степени $2k+1$ от углов треугольника, с. 160-168Рассматривается биркгофова интерполяция функции двух переменных многочленами степени $2k+1$ по совокупности двух переменных на треугольнике. Подобные оценки автоматически переносятся на оценки погрешности метода конечных элементов, с которым тесно связаны. Оценки погрешности аппроксимации для производных функции в предложенных конечных элементах зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок погрешности аппроксимации функции и ее частных производных. Неулучшаемость понимается в том смысле, что существует функция из заданного класса и существуют абсолютные положительные константы, не зависящие от триангуляции, такие, что для любого невырожденного треугольника справедливы оценки снизу. В данной работе для рассматриваемых интерполяционных условий предлагается набор конкретных функций, позволяющих получить соответствующие оценки погрешности для определенных частных производных.
Independence of interpolation error estimates by polynomials of $2k+1$ degree on angles in a triangle, pp. 160-168The paper considers Birkhoff-type triangle-based interpolation of two-variable function by polynomials of $2k+1$ degree by set of two variables. Similar estimates are automatically transferred to error estimates of related finite element method. The approximation error estimates of derivatives for the given finite elements depend only on the decomposition diameter, and do not depend on triangulation angles. We show that obtained approximation error estimates for a function and its partial derivatives are unimprovable. Unimprovability is understood in a following sense: there exists a function from the given class and there exist absolute positive constants independent of triangulation such that for any nondegenerate triangle estimates from below are valid. In this work, a system of specific functions is offered for interpolation conditions. These functions allow to obtain corresponding error estimates for definite partial derivatives.
-
Независимость оценок погрешности интерполяции многочленами четвертой степени от углов треугольника, с. 64-74Рассматриваются два способа биркгофовой интерполяции функции двух переменных многочленами четвертой степени на треугольнике для метода конечных элементов. Оценки погрешности для предложенных элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок.
Independence of interpolation error estimates by fourth-degree polynomials on angles in a triangle, pp. 64-74The paper considers two methods of Birkhoff-type triangle-based interpolation of two-variable function by fourth-degree polynomials for the finite element method. The error estimates for the given elements depend only on the decomposition diameter, and do not depend on triangulation angles. We show that the estimates obtained are unimprovable.
-
Независимость оценок погрешности интерполяции многочленами пятой степени от углов треугольника, с. 53-64Рассматриваются несколько способов биркгофовой интерполяции функции двух переменных многочленами пятой степени на треугольнике. Подобные оценки автоматически переносятся на оценки погрешности метода конечных элементов, с которым тесно связаны. Оценки погрешности для предложенных элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок. Неулучшаемость понимается в том смысле, что существует функция из заданного класса и существуют абсолютные положительные константы, не зависящие от триангуляции, такие, что для любого невырожденного треугольника справедливы оценки снизу.
Independence of interpolation error estimates by fifth-degree polynomials on angles in a triangle, pp. 53-64The paper considers several methods of Birkhoff-type triangle-based interpolation of two-variable function by fifth-degree polynomials. Similar estimates are automatically transferred to error estimates of related finite element method. The error estimates for the given elements depend only on the decomposition diameter, and do not depend on triangulation angles. We show that the estimates obtained are unimprovable. Unimprovability is understood in a following sense: there exists function from the given class and there exist absolute positive constants independent of triangulation such that for any nondegenerate triangle estimates from below are valid.
-
Рассматриваются два способа биркгофовой интерполяции функции двух переменных многочленами второй степени на треугольнике для метода конечных элементов. Оценки погрешности для одного из предложенных параболических элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок.
This paper is devoted to analysing the interpolation of the function of two variables by a parabolic polynomial on a triangle for the finite element method. The estimates of error for a given piecewise parabolic polynomial depend only on the diameter of restricted partition and don't depend on the angles of triangulation.
-
Рассматривается биркгофова интерполяция функции двух переменных многочленами шестой степени на треугольнике. Подобные оценки автоматически переносятся на оценки погрешности метода конечных элементов, с которым тесно связаны. Оценки погрешности для предложенных элементов зависят только от диаметра разбиения и не зависят от углов триангуляции. Показана неулучшаемость полученных оценок. Неулучшаемость понимается в том смысле, что существует функция из заданного класса и существуют абсолютные положительные константы, не зависящие от триангуляции, такие, что для любого невырожденного треугольника справедливы оценки снизу.
The paper considers Birkhoff-type triangle-based interpolation to a two-variable function by sixth-degree polynomials. Similar estimates are automatically transferred to error estimates of related finite element method. The error estimates for the given elements depend only on the decomposition diameter, and do not depend on triangulation angles. We show that the estimates obtained are unimprovable. Unimprovability is understood in a following sense: there exists function from the given class and there exist absolute positive constants independent of triangulation such that estimates from below are valid for any nondegenerate triangle.
-
Исследовано однопараметрическое семейство квадратичных интерполяционных многочленов нескольких переменных. В роли параметра выступает точка n-мерного пространства. Исследованы вопросы существования и единственности интерполяционных многочленов. Для многочленов получено явное представление (в барицентрической системе координат). Показано, что лишь для одного-единственного параметра имеет место непрерывная стыковка интерполяционных многочленов, построенных на элементах триангуляции специального вида. Для интерполяционного многочлена, соответствующего данному параметру, получено явное представление в декартовой системе координат. Применение интерполяции с данным параметром позволяет осуществлять квадратичную сплайн-аппроксимацию функций многих переменных (одновременно с аппроксимацией поля градиента этой функции).
интерполяция, аппроксимация, многомерный сплайн, градиент, симплекс, барицентрическая система координатThe one-parametrical family of quadratic interpolated polynomials of several variables is investigated. In a role of parameter the point of n-dimensional space acts. Questions of existence and uniqueness interpolated polynomials are investigated. For polynomials the obvious representation (in barycentric system of coordinates) is proved. It is shown that only for the unique parameter continuous docking of interpolated polynomials constructed on elements of a triangulation of a special type takes place. For interpolated polynomial appropriating the given parameter the obvious representation in the Cartesian system of coordinates is proved. Application of interpolation with the given parameter makes possible quadratic spline-approximation of functions of many variables (at the same time with approximation of a field of a gradient of this function).
-
Приведены обоснование и процедура построения специальных многомерных сплайнов произвольной степени лагранжевого типа, названных λ-сплайнами. Они строятся из многомерных интерполяционных алгебраических многочленов фиксированной степени, заданных на симплексах специальной триангуляции области определения исходной функции.
We give the basis and procedure of construction of special multivariate splines of any degree of Lagrange’s type, named by λ-splines. They are under construction from multivariate interpolated algebraic polynomials of the fixed degree set on simplexes of special triangulation of a range of definition of initial function.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.