Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'recurrent function':
Найдено статей: 11
  1. Рассматривается вопрос о существовании рекуррентных и почти рекуррентных сечений многозначных отображений R ∋ tF(t) ∈ compU с непустыми компактными образами F(t) в полном метрическом пространстве U. На множестве compU вводится метрика Хаусдорфа dist. Рекуррентные и почти рекуррентные многозначные отображения определяются как функции со значениями в метрическом пространстве (compU, dist). Доказано существование рекуррентных (почти рекуррентных) сечений многозначных рекуррентных (соответственно, почти рекуррентных) равномерно абсолютно непрерывных отображений. Рассматриваются также отображения R ∋ t → F(t), образы которых состоят из конечного числа точек (зависящего от t). Доказано, что если такое отображение почти рекуррентно, то у него существует почти рекуррентное сечение. Многозначное рекуррентное отображение, образы F(t) которого для всех t ∈ R состоят не более чем из n точек (где n ∈ N), имеет рекуррентное сечение. Если образы многозначного рекуррентного (почти рекуррентного) отображения tF(t) при всех t ∈ R состоят из n точек, то все n непрерывных сечений отображения F рекуррентны (почти рекуррентны).

    In the paper, we consider the problem of existence of recurrent and almost recurrent selections of multivalued mappings R ∋ tF(t) ∈ compU with nonempty compact sets F(t) in a complete metric space U. The set compU is equipped with the Hausdorff metric dist. Recurrent and almost recurrent multivalued maps are defined as the functions with values in the metric space (compU, dist). It is proved that there are recurrent (almost recurrent) selections of multivalued recurrent (almost recurrent) uniformly absolutely continuous maps. We also consider mappings R ∋ tF(t) with the sets F(t) consisting of a finite number of points (the number depends on the t ∈ R). We prove that if such a map is almost recurrent, then it has an almost recurrent selection. A multivalued recurrent mapping tF(t) with sets F(t) consisting of at most n points (where n ∈ N) has a recurrent selection. If the sets F(t) of a multivalued recurrent (almost recurrent) mapping tF(t) consist of n points for all t ∈ R, then all n continuous selections of the map F are recurrent (almost recurrent).

  2. Изучается вариационный подход к постановке и решению задачи приближения функций квазиполиномами  решениями однородных, автономных линейных разностных или дифференциальных уравнений.

    Egorshin A.O.
    On one variational smoothing problem, pp. 9-22

    We study the variational approach to setting and solving of the function approximating problem by quasipolynomials which are the solutions of the homogeneous autonomous linear difference or differential equations.

  3. Рассматриваются некоторые классы рекуррентных и почти рекуррентных многозначных отображений. Доказано, что такие многозначные отображения имеют рекуррентные и почти рекуррентные (из соответствующих классов) сечения.

    Some classes of recurrent and almost recurrent multivalued maps are considered. It is proved that such multivalued maps have recurrent and almost recurrent selections (from corresponding classes).

  4. Рассматривается динамическая система сдвигов в пространстве ℜ непрерывных функций, принимающих значения в полном метрическом пространстве (clos(Rn), ρcl) непустых замкнутых подмножеств в Rn. Расстояние между функциями в этом пространстве определяется с помощью аналога метрики Бебутова в пространстве вещественных функций, определенных и непрерывных на всей числовой оси. Показано, что для компактности замыкания траектории точки в ℜ достаточно, чтобы исходная функция была ограничена и равномерно непрерывна в метрике ρcl. Как следствие, доказано, что замыкание траектории рекуррентного движения или траектории почти периодического движения в ℜ компактно.

    In the work there is considered the dynamical system of translations in the space  of continuous multi-valued functions with images in complete metric space (clos(Rn), ρcl) of nonempty closed subsets of Rn. The distance between such functions is measured by means of the metric analogous to the Bebutov metric constructed for the space of continuous real-valued functions defined on the whole real line. It is shown that for compactness of the trajectory’s closure in  it is sufficient to have initial function bounded and uniformly continuous in the ρcl metric. As consequence, it is also proved that the trajectory’s closure of a recurrent or an almost periodic motion is compact in .

  5. Пусть $(U,\rho )$ - полное метрическое пространство, ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, и ${\mathcal R} ({\mathbb R},U)$ - пространства (сильно) измеримых функций $f:{\mathbb R}\to U$, преобразования Бохнера ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ которых являются рекуррентными функциями со значениями в метрических пространствах $L^p([-l,l],U)$ и $L^1([-l,l], (U,\rho ^{ \prime }))$, где $l>0$ и $(U,\rho^{ \prime })$ - полное метрическое пространство с метрикой $\rho ^{ \prime }(x,y)=\min\{ 1, \rho (x,y)\} ,$ $x, y\in U.$ Аналогично определяются пространства ${\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ и ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ функций (многозначных отображений) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ со значениями в полном метрическом пространстве $({\mathrm {cl}}\,_{ b}\, U, {\mathrm {dist}})$ непустых замкнутых ограниченных подмножеств метрического пространства $(U,\rho )$ с метрикой Хаусдорфа ${\mathrm {dist}}$ (при определении многозначных отображений $F\in {\mathcal R} ({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ рассматривается также метрика ${\mathrm {dist}} ^{ \prime }(X,Y)=\min\{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$). Доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ (соответственно $f\in {\mathcal R}^p ({\mathbb R},U)$) многозначных отображений $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (соответственно $F\in {\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$), для которых множества почти периодов подчинены множествам почти периодов многозначных отображений $F$. Для функций $g\in {\mathcal R} ({\mathbb R},U)$ приведены условия существования сечений $f\in {\mathcal R} ({\mathbb R},U)$ и $f\in {\mathcal R}^p ({\mathbb R},U),$ для которых $\rho (f(t),g(t))=\rho (g(t),F(t))$ при п.в. $t\in {\mathbb R}$. В предположении, что для любого $\varepsilon >0$ существует относительно плотное множество общих $\varepsilon $-почти периодов функции $g$ и многозначного отображения $F$, также доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ таких, что $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ при п.в. $t\in {\mathbb R}$, где $\eta :[0,+\infty ) \to [0,+\infty )$ - произвольная неубывающая функция, для которой $\eta (0) =0$ и $\eta (\xi )>0$ при всех $\xi >0$, при этом $f\in {\mathcal R}^p ({\mathbb R},U)$ в случае $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ При доказательстве используется равномерная аппроксимация функций $f\in {\mathcal R} ({\mathbb R},U)$ элементарными функциями из пространства ${\mathcal R} ({\mathbb R},U)$ множества почти периодов которых подчинены множествам почти периодов функций $f$.

     

    Let $(U,\rho )$ be a complete metric space and let ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, and ${\mathcal R} ({\mathbb R},U)$ be the spaces of (strongly) measurable functions $f:{\mathbb R}\to U$ for which the Bochner transforms ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ are recurrent functions with ranges in the metric spaces $L^p([-l,l],U)$ and $L^1([-l,l],(U,\rho ^{ \prime }))$ where $l>0$, and $(U,\rho ^{ \prime })$ is the complete metric space with the metric $\rho ^{ \prime }(x,y)=\min \{ 1,\rho (x,y)\} ,$ $x, y\in U.$ Analogously, we define the spaces ${\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ and ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ of functions (multivalued mappings) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ with ranges in the complete metric space $({\mathrm {cl}}\,_{ b}\, U,{\mathrm {dist}})$ of nonempty closed bounded subsets of the metric space $(U,\rho )$ with the Hausdorff metric ${\mathrm {dist}}$ (while defining the multivalued mappings $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ the metric ${\mathrm {dist}} ^{ \prime }(X,Y)=\min \{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$, is also considered). We prove the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ (accordingly $f\in {\mathcal R}^p({\mathbb R},U)$) of multivalued maps $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (accordingly $F\in {\mathcal R}^p ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$) for which the sets of almost periods are subordinated to the sets of almost periods of multivalued maps $F$. For functions $g\in {\mathcal R} ({\mathbb R},U),$ the conditions for the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ and $f\in {\mathcal R}^p({\mathbb R},U)$ such that $\rho (f(t),g(t))=\rho (g(t),F(t))$ for a.e. $t\in {\mathbb R}$ are obtained. On the assumption that the function $g$ and the multivalued map $F$ have relatively dense sets of common $\varepsilon $-almost periods for all $\varepsilon >0$, we also prove the existence of selectors $f\in {\mathcal R} ({\mathbb R},U)$ such that $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ for a.e. $t\in {\mathbb R}$, where $\eta :[0,+\infty ) \to [0,+\infty )$ is an arbitrary nondecreasing function for which $\eta (0)=0$ and $\eta (\xi )>0$ for all $\xi >0$, and, moreover, $f\in {\mathcal R}^p({\mathbb R},U)$ if $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ To prove the results we use the uniform approximation of functions $f\in {\mathcal R} ({\mathbb R},U)$ by elementary functions belonging to the space ${\mathcal R} ({\mathbb R},U)$ which have the sets of almost periods subordinated to the sets of almost periods of the functions $f$.

     

  6. Рассматривается антагонистическая линейно-выпуклая дифференциальная игра с показателем качества, оценивающим совокупность отклонений траектории движения в наперед заданные моменты времени от заданных целевых точек. Исследуется случай, когда не выполняется условие седловой точки в маленькой игре, также известное как условие Айзекса. Игра формализуется в классах смешанных стратегий управления игроков. Описывается численный метод для приближенного вычисления цены игры и построения оптимальных стратегий. Метод основывается на попятном построении выпуклых сверху оболочек вспомогательных программных функций. Приводятся результаты численных экспериментов на модельных примерах.

    A zero-sum linear-convex differential game with a quality index that estimates a set of deviations of a motion trajectory at given instants of time from given target points is considered. A case when the saddle point condition in a small game, also known as Isaac's condition, does not hold, is studied. The game is formalized in classes of mixed control strategies of players. A numerical method for approximate computation of the game value and optimal strategies is elaborated. The method is based on the recurrent construction of upper convex hulls of auxiliary program functions. The results of numerical experiments in model examples are given.

  7. Рассматриваются классы функций f:R→U со значениями в метрическом пространстве (U,ρ), преобразования Бохнера которых являются рекуррентными и почти рекуррентными функциями. Улучшены полученные ранее результаты о равномерной аппроксимации функций из рассматриваемых классов элементарными функциями из этих же классов. Эти результаты находят применение в исследовании вопроса о существовании удовлетворяющих ряду дополнительных условий почти рекуррентных сечений многозначных отображений. В последней части работы доказан вариант теоремы Лузина для рекуррентных функций.

    We consider the classes of functions f:R→U, taking values in a metric space (U,ρ), which have Bochner transforms from the classes of recurrent functions and almost recurrent functions. We improve the preceding results on the uniform approximation of functions from classes under consideration by elementary functions from the same classes. These results can be applied to the investigation of the problem of the existence of almost recurrent selections for multivalued maps. The selections are supposed to satisfy a number of additional conditions. In the last section of the paper the variant of Lusin's theorem for recurrent functions is proved.

  8. В данной работе изучены сечения производящего ряда для решений линейного многомерного разностного уравнения с постоянными коэффициентами и найдены рекуррентные соотношения, связывающие такие сечения. Как следствие, доказан многомерный аналог теоремы Муавра о рациональности сечений производящего ряда в зависимости от вида начальных данных задачи Коши для многомерного разностного уравнения. Для задач о числе путей на целочисленной решетке показано, что при подходящем выборе шагов сечения их производящего ряда представляют известные последовательности многочленов (Фибоначчи, Пелля и др.).

    In this paper, we study the sections of the generating series for solutions to a linear multidimensional difference equation with constant coefficients and find recurrent relations for these sections. As a consequence, a multidimensional analogue of Moivre's theorem on the rationality of sections of the generating series depending on the form of the initial data of the Cauchy problem for a multidimensional difference equation is proved. For problems on the number of paths on an integer lattice, it is shown that the sections of their generating series represent the well-known sequences of polynomials (Fibonacci, Pell, etc.) with a suitable choice of steps.

  9. В пространстве $\mathbb R^k$ $(k \geqslant 2)$ рассматривается нестационарная дифференциальная игра (обобщенный пример Л.С. Понтрягина) с $n$ преследователями и одним убегающим при одинаковых динамических и инерционных возможностях всех игроков, описываемая системой вида

    $$Lz_{i}=z_{i}^{(l)}+a_{1}(t)z_{i}^{(l-1)}+ \dots +a_{l}(t)z_{i} =u_{i}-v, \quad u_{i},v\in V,$$

    $$z_{i}^{(s)}(t_0) = z_{is}^0,\quad i=1,2, \ldots, n,\ s=0,1, \ldots, l-1.$$

    Множество значений допустимых управлений игроков $V$ - строго выпуклый компакт с гладкой границей, $a_{1}(t),\dots, a_{l}(t)$ - непрерывные на $[t_0, \infty)$ функции, терминальные множества - начало координат. Преследователи используют квазистратегии. Предполагается, что функции $\xi_{i}(t)$, являющиеся решением задачи Коши

    $$Lz_{i}=0,\quad z_{i}^{(s)}(t_0) = z_{is}^0,$$

    являются рекуррентными. Приводятся свойства рекуррентных функций. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи преследования. Доказательство проводится с использованием метода разрешающих функций. Приведен пример, иллюстрирующий полученные условия.

    A non-stationary differential game (a generalized example of L.S. Pontryagin) with $n$ pursuers and one evader is considered in the space $\mathbb R^k$ $(k \geqslant 2)$. All players have equal dynamic and inertial capabilities. The game is described by a system of the form

    $$Lz_{i}=z_{i}^{(l)}+a_{1}(t)z_{i}^{(l-1)}+ \dots +a_{l}(t)z_{i} =u_{i}-v, \quad u_{i},v\in V,$$

    $$z_{i}^{(s)}(t_0) = z_{is}^0,\quad i=1,2, \ldots, n,\ s=0,1, \ldots, l-1.$$

    The set $V$ of admissible player controls is strictly convex compact set with smooth boundary, $a_{1}(t),\dots, a_{l}(t)$ are continuous on $[t_0, \infty)$ functions, the terminal sets are the origin of coordinates. Pursuers use quasi-strategies. It is assumed that functions $\xi_{i}(t)$ being the solution of Cauchy problem

    $$Lz_{i}=0,\quad z_{i}^{(s)}(t_0) = z_{is}^0,$$

    are recurrent. Properties of recurrent functions are given. In terms of initial positions and game parameters the sufficient conditions of the pursuit problem solvability are obtained. The proof is carried out using the method of resolving functions. An example illustrating the obtained conditions is given.

  10. Маниваннан В.Р., Венкатараман М.
    $\Delta$-функции на рекуррентных случайных блужданиях, с. 119-129

    Если случайное блуждание на бесконечном счетном пространстве состояний обратимо, то известны необходимые и достаточные условия для того, чтобы это блуждание было рекуррентным. Если отбросить условие обратимости, то, используя дискретные решения Дирихле и выметание (понятия, известные из теории потенциала), можно частично установить некоторые из приведенных выше результатов, касающихся повторяемости и переходности случайного блуждания.

    Manivannan V.R., Venkataraman M.
    $\Delta$-functions on recurrent random walks, pp. 119-129

    If a random walk on a countable infinite state space is reversible, there are known necessary and sufficient conditions for the walk to be recurrent. When the condition of reversibility is dropped, by using discrete Dirichlet solutions and balayage (concepts familiar in potential theory) one could partially retrieve some of the above results concerning the recurrence and the transience of the random walk.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref