Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'statistically invariant sets.':
Найдено статей: 7
  1. Изучение фазового перехода является одной из центральных проблем статистической механики. Он происходит, когда для модели существуют по крайней мере две различные меры Гиббса. Известно, что для ферромагнитной модели Поттса с $q$ состояниями при достаточно низких температурах существуют не более $2^{q}-1$ трансляционно-инвариантных расщепленных мер Гиббса. Для непрерывных гамильтонианов меры Гиббса образуют непустое, выпуклое, компактное подмножество в пространстве всех вероятностных мер. Экстремальные меры, которые соответствуют крайним точкам этого множества, определяют чистые фазы. Мы изучаем экстремальность трансляционно-инвариантных расщепленных мер Гиббса для ферромагнитной модели Поттса с $q$ состояниями на дереве Кэли третьего порядка. Мы определяем области, в которых изучаемые трансляционно-инвариантные меры Гиббса для этой модели являются экстремальными или не являются экстремальными. Мы сводим описание мер Гиббса к решению нелинейного функционального уравнения, каждое решение которого соответствует одной предельной мере Гиббса.

    One of the main issues in statistical mechanics is the phase transition phenomenon. It happens when there are at least two distinct Gibbs measures in the model. It is known that the ferromagnetic Potts model with $q$ states possesses, at sufficiently low temperatures, at most $2^{q}-1$ translation-invariant splitting Gibbs measures. For continuous Hamiltonians, in the space of probability measures, the Gibbs measures form a non-empty, convex, compact set. Extremal measures, which corresponds to the extreme points of this set, determines pure phases. We study the extremality of the translation-invariant splitting Gibbs measures for the ferromagnetic $q$-state Potts model on the Cayley tree of order three. We define the regions where the translation-invariant Gibbs measures for this model are extreme or not. We reduce description of Gibbs measures to solving a non-linear functional equation, each solution of which corresponds to one Gibbs measure.

  2. Изучаются статистические характеристики множества достижимости A(t,σ,X) управляемой системы

    ẋ = f(ht,x,u), (t,σ,x,u) ∈ R × Σ × Rn × Rm, (1)

    которая параметризована с помощью топологической динамической системы (Σ,ht). Получены оценки снизу таких характеристик, как относительная частота поглощения, верхняя и нижняя относительные частоты поглощения множества достижимости системы (1) заданным множеством M, а также достаточные условия статистической инвариантности множества M относительно управляемой системы. Исследуются условия, которым должна удовлетворять система (1) и множество X, чтобы для заданных σΣ и χ0 ∈ (0, 1] относительная частота поглощения множества достижимости A(t,σ,X) системы (1) множеством M была не менее χ0. Результаты работы иллюстрируются на примере управляемой системы, которая описывает периодические процессы в химическом реакторе.

     

    We investigate the statistical characteristics of attainability set A(t,σ,X) of control system

    ẋ = f(ht,x,u), (t,σ,x,u) ∈ R × Σ × Rn × Rm, (1)

    which is parametrized by means of topological dynamic system (Σ,ht). We obtained the lower estimations for such characteristics as the relative frequency of containing, the upper and lower relative frequencies of containing of attainability set of the system (1) in the given set M as well as new sufficient conditions of statistical invariance of the set M with respect to control system. We received the conditions for system (1) and set X at which for given σ ∈ Σ и χ0 ∈ (0, 1] the relative frequency of containing of attainability set A(t,σ,X) of systems (1) in the set M not less χ0. Results of the work are illustrated by the example of control system which describes periodic processes in a chemical reactor.

     

  3. Для управляемых систем со случайными параметрами исследуются свойства статистической инвариантности и статистически слабой инвариантности, выполненные с вероятностью единица. Получены достаточные условия инвариантности заданного множества относительно управляемой системы, выраженные в терминах функций Ляпунова и динамической системы сдвигов. Доказано обобщение теоремы С.А. Чаплыгина о дифференциальных неравенствах и получены условия существования верхнего решения для задачи Коши с кусочно непрерывной по t правой частью без предположения единственности решения.

    We investigate the properties of statistical invariance and statistically weak invariance with probability one for control systems with random parameters. We obtain the sufficient conditions for the invariance of the given set with respect to the control system formulated in terms of Lyapunov functions and the dynamical system of shifts. We prove the extension for the theorem of S.A. Chaplygin about differential inequalities and obtain the conditions of existence for the upper solution of Cauchy problem with piecewise continuous on t right-hand part without assumption of uniqueness of solution.

  4. Изучаются статистические характеристики множества достижимости управляемой системы, которая параметризована с помощью топологической динамической системы. Получены оценки снизу характеристик, связанных с инвариантностью заданного множества на конечном промежутке времени. Рассматривается также следующая задача, возникающая во многих приложениях. Пусть заданы числа λ0 ∈ (0, 1] и θ > 0. Необходимо найти условия, которым должны удовлетворять управляемая система и множество X, чтобы для заданного σ ∈ Σ относительная частота поглощения множества достижимости A(t,σ,X) системы заданным множеством M на любом отрезке времени длины θ была бы не менее λ0. Отметим, что характеристика θ предполагается заданной в зависимости от прикладной задачи. В частности, если управляемый процесс имеет периодический характер, то θ является периодом данного процесса. Результаты работы иллюстрируются на примерах управляемых систем, которые описывают различные модели роста популяции.

    We study the statistical characteristics of the attainability set A(t,σ,X) of the control system which is parametrized by means of a topological dynamical system (Σ,ht). We obtain the lower estimates for characteristics connected with invariance of given set on a finite time interval. We also consider the following problem arising in many applications. Let numbers λ0 ∈ (0, 1] and θ > 0 are given. It is necessary to find the conditions which the control system and set X should satisfy providing that for given σ ∈ Σ relative frequency of containing of the attainability set A(t,σ,X) in the given set M on any interval of time length θ would be not less then λ0. Let’s notice, that the characteristic θ is assumed given depending on an applying problems. In particular, if control process is periodic, then θ is the period of the process. Results are illustrated by examples of the control systems which describe different models of population growth.

  5.  

    Исследуются условия, при которых управляемая система  = f(t, x, u), uU(t, x), вместе с замыканием множества сдвигов (относительно времени t) управляемой системы обладает свойством равномерной локальной или равномерной глобальной достижимости на заданном отрезке времени. Не предполагается, что функция (t, x) → U(t, x), задающая геометрические ограничения на допустимые управления u(t, x) ∈ U(t, x), имеет выпуклые компактные образы и не предполагается, что соответствующее управляемой системе дифференциальное включение имеет выпуклые образы.

     

    We investigate the conditions under which the control system  = f(txu), u ∈ U(tx) together with closure of set of shifts (concerning time t) of control system possesses property of uniform local or uniform global attainability on the given time interval. We do not suppose that function (tx) → U(tx), setting geometrical restrictions on admissible controls u(tx) ∈ U(tx), has convex compact images and we do not suppose that differential inclusion corresponding to control system has convex images.

  6. Данная статья является продолжением работ Л.И. Родиной и Е.Л. Тонкова, в которых введено расширение понятия инвариантности множеств относительно управляемых систем и дифференциальных включений. Это расширение состоит в исследовании множеств, которые не являются инвариантными в «классическом» смысле, но обладают свойством статистической инвариантности, а также в изучении статистических характеристик множества достижимости управляемой системы.

    В данной работе рассматриваются характеристики, связанные с инвариантностью заданного множества M(σ) относительно управляемой системы, которые отражают свойство равномерности пребывания множества достижимости системы в множестве M(σ) на конечном промежутке времени. Для управляемой системы со случайными коэффициентами получены оценки этих характеристик, выраженные в терминах функций Ляпунова, производной в силу дифференциального включения и динамической системы сдвигов. В частности, получены оценки, выполненные с вероятностью единица, для характеристик управляемой системы, которую будем называть системой с переключениями. Данную систему можно отождествить со стационарным случайным процессом, множество состояний которого конечно; для него заданы начальное вероятностное распределение и вероятности нахождения в каждом состоянии; длины промежутков между моментами переключения системы с одного состояния на другое являются случайными величинами с заданной функцией распределения. Рассматривается пример оценки исследуемых характеристик для линейной управляемой системы с переключениями.

    This article is continuation of works of L.I. Rodina and E.L. Tonkov in which expansion of the concept of invariance for sets concerning control systems and differential inclusions is entered. This expansion consists in research of the sets which are not invariant in “classical’’ sense, but possess the property of statistical invariance, and also in studying of statistical characteristics for attainability set of control system.

    We consider the characteristics connected with the invariance of the given set M(σ) with respect to the control system which display the property of uniformity of stay for the attainability set of the system in M(σ) on the finite time interval. We obtain estimates of these characteristics for systems with random coefficients in terms of Lyapunov functions, a derivative owing to differential inclusion and the dynamical system of shifts. In particular, we investigate the estimations with probability one for characteristics of control system which we will name a system with switchings. This system can be identified with a stationary random process whose set of states is finite; for this set there are given the initial probability distribution and the probabilities of finding in each state; the lengths of intervals between the moments of switching system from one state to another are random variables with a given distribution function. The example of estimation of the investigated characteristics for a linear control system with switchings is considered.

  7. Получены условия, позволяющие оценивать относительную частоту пребывания множества достижимости управляемой системы в некотором заранее заданном множестве. Если относительная частота пребывания в этом множестве равна единице, то данное множество называется статистически инвариантным. Получены также условия, при которых заданное множество статистически слабо инвариантно относительно управляемой системы, то есть для каждой начальной точки из этого множества по крайней мере одно решение управляемой системы, статистически инвариантно. Предполагается, что образы правой части дифференциального включения, отвечающего данной управляемой системе, замкнуты, но не обязательно компактны. Основные утверждения формулируются в терминах функций Ляпунова, метрики Хаусдорфа–Бебутова и динамической системы сдвигов, сопутствующей правой части дифференциального включения.

    Rodina L.I., Tonkov E.L.
    The statistically weak invariant sets of control systems, pp. 67-86

    We obtain the conditions that allow to estimate the relative frequency of occurence of the attainable set of a control system in some given set. The set is called statistically invariant if the relative frequency of occurence in this set is equal to one. We also derive the conditions of the statistically weak invariance of the given set with respect to controllable system, that is, for every initial point from this set, at least one solution of the control system is statistically invariant. We suggest that the images of the right hand part of the differential inclusions corresponding for the given control system are closed but may be not compact. The main results are formulated in the terms of Lyapunov functions, metric of Hausdorff-Bebutov and the dynamical system of shifts that attended in the right hand part of the differential inclusion.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref