Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В работе описывается классификация локально конформного почти косимплектического многообразия ($\mathcal{LCAC_{S}}$-многообразия) в соответствии с тензором конгармонической кривизны. В частности, были получены необходимые условия $\Phi$ инвариантности тензора конгармонической кривизны на $\mathcal{LCAC_{S}}$-многообразии классов $CT_{i}$, $i = 1,2,3$. Кроме того, доказано, что любое $\mathcal{LCAC_{S}}$-многообразие класса $CT_{1}$ оказывается конгармоничным и $\Phi$-параконтактным.
-
Работа посвящена теории плюрипотенциала на аналитических поверхностях. Теория плюрипотенциала в комплексном пространстве ${\mathbb C}^{n}$, а также на штейновом комплексном многообразии $X\subset{\mathbb C}^{N}$ (без особого множества) изучена достаточно подробно. В этой работе мы предлагаем новую технологию для изучения основных объектов теории потенциала на аналитическом множестве с непустым особым (критическим) множеством.
-
Определена конформная связность со скалярной кривизной как обобщение псевдориманова пространства постоянной кривизны. Вычислена матрица кривизны такой связности. Доказано, что на многообразии конформной связности со скалярной кривизной имеется конформная связность с нулевой матрицей кривизны. Дано определение перенормируемого скаляра и доказано существование перенормируемых скаляров на любом многообразии конформной связности, где существует разбиение единицы. Доказано: 1) существование на многообразии конформной связности с нулевой матрицей кривизны конформной связности с положительной, отрицательной и знакопеременной скалярной кривизной; 2) существование на многообразии конформной связности глобальной калибровочно-инвариантной метрики; 3) на гиперповерхности конформного пространства индуцированная конформная связность не может быть с ненулевой скалярной кривизной.
-
Рассматривается обобщенное уравнение Курамото-Сивашинского в случае, когда неизвестная функция зависит от двух пространственных переменных. Такой вариант данного уравнения используется в качестве математической модели формирования неоднородного рельефа на поверхности полупроводников под воздействием потока ионов. В работе данное уравнение изучается вместе с однородными краевыми условиями Неймана в трех областях: прямоугольнике, квадрате и равнобедренном треугольнике. Изучен вопрос о локальных бифуркациях при смене устойчивости пространственно однородными состояниями равновесия. Показано, что в данных трех краевых задачах реализуются послекритические бифуркации и в их результате в каждой из трех изучаемых краевых задач бифурцируют пространственно неоднородные решения. Для них получены асимптотические формулы. Выявлена зависимость характера бифуркаций от выбора, геометрии области. В частности, определен вид зависимости от пространственных переменных. Изучен вопрос об устойчивости, в смысле определения А.М. Ляпунова, найденных пространственно неоднородных решений. Анализ бифуркационных задач использовал известные методы теории динамических систем с бесконечномерным фазовым пространством: интегральных (инвариантных) многообразий, нормальных форм Пуанкаре-Дюлака в сочетании с асимптотическими методами.
-
Рассматриваются Cr-гладкие (r≥1) диффеоморфизмы многомерного пространства в себя с гиперболической неподвижной точкой и нетрансверсальной гомоклинической к ней точкой. Из работ Ш. Ньюхауса, Л.П. Шильникова, Б.Ф. Иванова и других авторов следует, что при определенном способе касания устойчивого и неустойчивого многообразий окрестность гомоклинической точки может содержать счетное множество устойчивых периодических точек, но по крайней мере один из характеристических показателей у таких точек стремится к нулю с ростом периода. В предлагаемой работе показано, что при определенных условиях, наложенных на характер касания устойчивого и неустойчивого многообразий, в окрестности нетрансверсальной гомоклинической точки лежит бесконечное множество устойчивых периодических точек, характеристические показатели которых отделены от нуля.
-
В настоящее время теория слоений является интенсивно развивающимся разделом современной дифференциальной геометрии, что показывают многочисленные исследования по теории слоений. Целью нашей работы является изучение структуры группы диффеоморфизмов $ Diff_ {F} (M) $ и группы изометрий $Iso_{F}(M)$ слоеного многообразия $ (M,F) $. Показано, что группа $ Diff_{F}(M) $ является замкнутой подгруппой группы $ Diff(M) $ диффеоморфизмов многообразия $ M $ в компактно-открытой топологии, а также доказана,что группа изометрий $ Iso_{F}(M) $ слоеного многообразия является группой Ли. Введена новая топология на $ Diff_{F}(M) $, которая зависит от слоения $ F $ и называется $ F$- компактно открытой топологией. Доказано, что некоторые подгруппы группы $ Diff_F (M) $ являются топологическими группами с $F$-компактно открытой топологией.
-
Рассматривается одна из версий обобщенного вариационного уравнения Гинзбурга-Ландау, дополненная периодическими краевыми условиями. Для такой краевой задачи изучен вопрос о существовании, устойчивости и локальных бифуркациях одномодовых состояний равновесия. Показано, что в случае близком к критическому трехкратного нулевого собственного значения в задаче об устойчивости одномодовых пространственно неоднородных состояний равновесия реализуются докритические бифуркации двумерных инвариантных торов, заполненных пространственно неоднородными состояниями равновесия. Анализ поставленной задачи опирается на такие методы теории бесконечномерных динамических систем как теория инвариантных многообразий и аппарат нормальных форм. Для решений, формирующих инвариантные торы, получены асимптотические формулы.
-
В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.
-
Стабильность вполне управляемых систем, с. 81-93Предметом настоящей работы является вопрос о стабильности вполне управляемых систем, заданных на гладком многообразии. Известно, что множества управляемости симметричных систем порождают сингулярные слоения. В случае, когда множества управляемости имеют одинаковую размерность, возникает регулярное слоение. Таким образом, возникает возможность применения методов теории слоений в задачах теории управления. В данной работе излагаются некоторые результаты авторов о возможности применения теорем о стабильности слоев для задачи о стабильности вполне управляемых систем и для изучения геометрии множества достижимости. Гладкость всюду в работе будет означать гладкость класса $C^{\infty}.$
-
В работе исследуется динамика диска, катящегося по абсолютно шероховатой плоскости. Доказано, что уравнения движения обладают инвариантной мерой с непрерывной плотностью только в двух случаях: при динамически симметричном диске и диске со специальным распределением масс. В первом случае уравнения движения обладают двумя дополнительными интегралами и являются интегрируемыми в квадратурах по теореме Эйлера-Якоби. Во втором случае с помощью отображения Пуанкаре показано отсутствие дополнительных интегралов. В обоих случаях для любой области фазового пространства, переносимой потоком системы, ее объем, вычисленный с помощью плотности инвариантной меры, сохраняется. В неголономной механике известны как системы, допускающие инвариантную меру, так и системы, у которых она отсутствует.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.