Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Для двухпараметрического семейства функций введено понятие TA-системы, которое является обобщением известного понятия T-системы для однопараметрического семейства функций. Сформулирован и доказан ряд утверждений о системах функций, образующих TA-систему. Построенная теория TA-систем применена для изучения линейных нестационарных управляемых систем с многомерным управлением. Для указанных выше систем решена задача о быстродействии в нуль при условии, что начальная точка движения находится внутри множества докритичности.
-
Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из основных задач математической теории управления - задача о сближении фазового вектора управляемой системы с компактным целевым множеством в фазовом пространстве в фиксированный момент времени. В этой работе в качестве целевого множества выбрано множество Лебега скалярной липшицевой функции, определенной на фазовом пространстве. Упомянутая задача о сближении тесно связана с многими важными и ключевыми задачами теории управления, в частности с задачей об оптимальном по быстродействию приведении управляемой системы на целевое множество. Из-за сложности задачи о сближении для нетривиальных управляемых систем аналитическое представление решений невозможно даже для относительно простых управляемых систем. Поэтому в настоящей работе мы изучаем прежде всего вопросы, связанные с конструированием приближенного решения задачи о сближении. Конструирование приближенного решения тем методом, который изложен в работе, связано прежде всего с конструированием интегральной воронки управляемой системы, представленной в так называемом «обратном» времени. К настоящему времени известно несколько алгоритмов конструирования разрешающего программного управления в задаче о сближении. Здесь представлен алгоритм построения управления, основанный на максимальном притяжении движения системы к множеству разрешимости задачи о сближении. В работе приведены примеры.
-
Предмет изучения - псевдовершины краевого множества, необходимые для аналитического и численного конструирования сингулярных ветвей обобщенного (минимаксного) решения задачи Дирихле для уравнения типа эйконала. Рассмотрен случай переменной гладкости границы краевого множества, при котором порядок гладкости в точках рассмотрения понижается до минимально возможного значения - до единицы. Получены необходимые условия существования псевдовершин, выраженные в терминах односторонних частичных пределов дифференциальных соотношений, зависящих от свойств локальных диффеоморфизмов, которые определяют эти точки. Приведен пример, иллюстрирующий приложения полученных результатов при решении задачи управления по быстродействию на плоскости.
-
Численное решение задачи оптимального быстродействия для линейных систем с запаздыванием, с. 100-105Предлагается численный метод решения задачи оптимального быстродействия для линейных систем с постоянным запаздыванием. Доказано, что этот итерационный метод сходится за конечное число итераций к ε-оптимальному решению. Под ε-оптимальным решением понимается пара {T, u}, где u = u(t), t ∈ [0, T] допустимое управление, под действием которого управляемая система переходит в ε-окрестность начала координат за время T ≤ Tmin, Tmin время оптимального по быстродействию перехода в начало координат. Достаточно общая задача быстродействия с запаздыванием исследована в работе [Васильев Ф.П., Иванов Р.П. О приближенном решении задачи быстродействия с запаздыванием //Журнал вычислительной математики и математической физики. 1970. Т. 10, № 5. С. 1124–1140.], предложено ее приближенное решение и обсуждены вычислительные аспекты. Однако для решения вспомогательных задач оптимального управления, возникающих при применении предлагаемых способов решения задачи быстродействия, предлагается использовать методы градиентного и ньютоновского типов, которые имеют локальную сходимость. Предложенный нами метод имеет глобальную сходимость.
-
Рассмотрен класс задач управления по быстродействию в трехмерном пространстве с шаровой вектограммой скоростей. В качестве целевого множества выбрана гладкая регулярная кривая $\Gamma.$ Выделены псевдовершины — характеристические точки на $\Gamma,$ отвечающие за возникновение сингулярности у функции оптимального результата. Выявлены характерные особенности структуры сингулярного множества, относящегося к семейству биссектрис. Найдено аналитическое представление для крайних точек биссектрисы, соответствующих фиксированной псевдовершине. В качестве иллюстрации эффективности развиваемых методов решения негладких динамических задач приведен пример численно-аналитического построения разрешающих конструкций задачи управления по быстродействию.
-
Рассматривается задача об оптимальном управлении по быстродействию. Обсуждаются достаточные условия локальной оптимальности, связанные с необходимыми условиями принципа максимума Понтрягина при условии полной управляемости системы в вариациях. Задача обсуждается для системы, описываемой векторным дифференциальным уравнением, обыкновенным или с последействием. В случае конфликтного управления обсуждается задача оптимального управления по критерию минимакса-максимина времени выхода системы в заданное состояние. Рассматривается модельный пример и обсуждается соответствующий вычислительный эксперимент.
-
Алгоритмы построения функции оптимального результата в задаче быстродействия с простой динамикой, с. 152-154Предложены аналитические и численные алгоритмы построения функции оптимального результата и ее множеств Лебега для задачи управления по быстродействию с круговой индикатрисой скоростей. Выделены и изучены многообразия, на которых функция оптимального результата теряет гладкость.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.