Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'точечный вихрь':
Найдено статей: 10
  1. В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.

  2. Изучается движение трех точечных вихрей в случае, если центр завихренности лежит на траектории одного из вихрей или находится достаточно близко от нее. Численно исследованы траектории вихрей в широком диапазоне изменения их интенсивностей. Вычислены асимптотики траекторий вихрей для конфигураций, близких к сингулярной или коллинеарной.

  3. В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.

  4. В данной работе получены уравнения движения пары вихрей и кругового профиля с параметрическим возбуждением, которое возникает за счет периодического движения материальной точки. Подобные плоские задачи, с одной стороны, носят модельный характер и не могут быть использованы для точного количественного описания реальных траекторий системы. С другой стороны, во многих случаях такие модели позволяют получить достаточно точную качественную картину динамики и, вследствие простоты, данные 2D модели позволяют оценить влияние различных параметров. Описаны относительные положения равновесия, обобщающие решения Феппля и коллинеарные конфигурации, в отсутствии движения материальной точки. Показано, что в окрестности относительных равновесий в случае периодического движения центра масс профиля образуется стохастический слой.

  5. В работе применяется топологический подход для поиска и анализа устойчивости относительных равновесий для системы трех вихрей равной интенсивности в круговой области. Показано, что система трех вихрей допускает редукцию на одну степень свободы. Найдены две новые стационарные конфигурации - равнобедренная и коллинеарная несимметричная, построены бифуркационные диаграммы, проведен анализ устойчивости для этих случаев.

  6. В данной работе получена модель, описывающая движение точечных вихрей в идеальной несжимаемой жидкости на конечном плоском цилиндре. Подробно рассмотрен случай двух вихрей. Показано, что уравнения движения вихрей могут быть представлены в гамильтоновой форме и обладают дополнительным первым интегралом. Предложена процедура редукции на фиксированный уровень первого интеграла. Для полученной редуцированной системы построены фазовые портреты, указаны неподвижные точки и особенности системы.

  7. В работе рассмотрены новый метод конструктивного понижения порядка для систем точечных вихрей на плоскости и сфере. Этот метод близок к классической процедуре исключения узла по Якоби в небесной механике. Однако, в случае динамики вихрей возникают некоторые особые ситуации, требующие отдельного рассмотрения. Более подробно рассмотрена задача приведения четырех точечных вихрей на плоскости и сфере.

  8. Для задачи двух точечных вихрей в кольце получено представление гамильтониана через эллиптические функции и исследована устойчивость томсоновской конфигурации.

  9. Рассмотрена динамика системы, описывающей управляемое движение неуравновешнного кругового профиля в присутствии точечных вихрей. Управление движением профиля реализуется за счет периодического изменения положения центра масс, гиростатического момента и момента инерции системы. Предложен вывод уравнений движения на основе подхода Седова, уравнения движения представлены в гамильтоновой форме. Рассмотрено периодическое возмущение известного интегрируемого случая.

  10. Данная работа посвящена исследованию динамики следующих систем большого числа точечных вихрей на плоскости:
    - вихревые кольца с внешним радиусом r=1 и переменным внутренним радиусом r0,
    - вихревые эллипсы с полуосями a, b.
    Основное внимание уделено изучению асимптотического поведения (t→∞) систем и проверке критериев устойчивости для непрерывных распределений завихренности с помощью компьютерного эксперимента.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref