Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Доказана теорема, вводящая эквивалентные определения для некоторых пределов сходящихся последовательностей в расширении Белла счетного дискретного пространства.
The theorem is proved which gives equivalent definitions of some limits of convergent sequence in Bell’s compactification of countable discrete space.
-
Изучается бикомпактное расширение счётного дискретного пространства, построенное как пространство Стоуна одной булевой алгебры. Получены новые классы точек этого расширения.
About points of compactification of N, pp. 10-17We consider a compactification of a countable discrete space constructed as a Stone space of a Boolean algebra. Some new points of the compactification are constructed.
-
О замыканиях счётных подмножеств BN, с. 15-20Рассматривается компактификация BN счётного дискретного пространства N. В данной работе описаны свойства замыканий подмножеств BN, состоящих из различных классов точек. Показано существование точек, не принадлежащих классам, выделенным ранее.
бикомпактное расширение, компактификация Стоуна–Чеха, пространство Стоуна булевой алгебры, центрированные системы множеств.
On closures of countable subsets of BN, pp. 15-20We consider a compactification BN of a countable discrete space N. The paper describes some properties of the closures of subsets of BN, which consist of points belonging to different classes. We prove the existence of points which do not belong to the classes obtained before.
-
В конечномерном нормированном пространстве рассматривается дискретная игровая задача фиксированной продолжительности. Терминальное множество определяется условием принадлежности нормы фазового вектора отрезку с положительными концами. Множество, определяемое данным условием, названо в работе кольцом. Цель первого игрока заключается в том, чтобы в заданный момент времени привести фазовый вектор на терминальное множество. Цель второго игрока противоположна. В данной работе построены оптимальные управления игроков. Проведено компьютерное моделирование игрового процесса. Рассмотрена модификация исходной задачи, в которой у первого игрока в неизвестный момент времени происходит изменение в динамике.
In a normed space of finite dimension a discrete game problem with fixed duration is considered. The terminal set is determined by the condition that the norm of the phase vector belongs to a segment with positive ends. In this paper, a set defined by this condition is called a ring. The aim of the first player is to lead a phase vector to the terminal set at fixed time. The aim of the second player is the opposite. In this paper, optimal controls of the players are constructed. Computer simulation of the game process is performed. A modification of the original problem, in which at an unknown time there is a change in the dynamics of the first player, is considered.
-
О кубе и проекциях подпространства, с. 402-415Рассмотрено взаимное расположение вершин единичного многомерного куба, аффинного подпространства и его ортогональных проекций на координатные подпространства. Даны верхние и нижние ограничения размерности подпространства, при которых некоторая ортогональная проекция всегда сохраняет отношение инцидентности подпространства и вершин куба. Также рассмотрены некоторые косоугольные проекции. Кроме того, дан краткий обзор истории развития многомерной начертательной геометрии. Аналитические и синтетические методы в геометрии обособились с XVII века. Хотя анализ и синтез тесно переплетаются, с этого времени многие геометры и инженеры делают тонкое различие. Указания на идею о многомерном пространстве можно найти в работах XVIII века, но настоящее развитие началось с середины XIX века. Вскоре такие работы появились и на русском языке. Далее многие математики обобщали свои теории на многомерный случай. Наши новые результаты получены аналитическими и синтетическими методами. Они иллюстрируют сложность задач псевдобулева программирования, поскольку снижение размерности задачи методом ортогонального проектирования встречает препятствие в худшем случае.
On a cube and subspace projections, pp. 402-415We consider the arrangement of vertices of a unit multidimensional cube, an affine subspace, and its orthogonal projections onto coordinate subspaces. Upper and lower bounds on the subspace dimension are given under which some orthogonal projection always preserves the incidence relation between the subspace and cube vertices. Some oblique projections are also considered. Moreover, a brief review of the history of the development of multidimensional descriptive geometry is given. Analytic and synthetic methods in geometry diverged since the 17th century. Although both synthesis and analysis are tangled, from this time forth many geometers as well as engineers keep up a nice distinction. One can find references to the idea of higher-dimensional spaces in the 18th-century works, but proper development has been since the middle of the 19th century. Soon such works have appeared in Russian. Next, mathematicians generalized their theories to many dimensions. Our new results are obtained by both analytic and synthetic methods. They illustrate the complexity of pseudo-Boolean programming problems because reducing the problem dimension by orthogonal projection meets obstacles in the worst case.
-
В данной статье исследуются специфические особенности соотношений между топологической и алгебраической структурами квазигрупп и луп. Исследуется измеримость подмножеств топологических квазигрупп и луп относительно инвариантных мер. Изучается семейство неизмеримых подмножеств в локально компактных недискретных лупах. Выясняется существование локально $\mu$-нулевых подмножеств, не являющихся $\mu$-нулевыми, в локально компактной левой квазигруппе, не являющейся $\sigma$-компактной. Исследуются факторпространства измеримых пространств на квазигруппах. Более того, изучаются однородные пространства квазигрупп, а также счетная отделимость подмножеств в них.
квазигруппа, топология, алгебра, однородное пространство, мера, измеримые пространства, факторпространствоIn this paper we study specific features of the relations between topological and algebraic structures of quasigroups and loops. We study the measurability of subsets of topological quasigroups and loops with respect to invariant measures. We study the family of non-measurable subsets in locally compact non-discrete loops. We find out the existence of locally $\mu $-zero subsets that are not $\mu $-zero in a locally compact left quasigroup that is not $\sigma $-compact. We study quotient spaces of measurable spaces on quasigroups. Moreover, we study homogeneous spaces of quasigroups and countable separability of subsets in them.
-
Рассматривается одна булева алгебра и ее пространство Стоуна как бикомпактное расширение счетного дискретного пространства. Доказаны некоторые свойства этого расширения.
We consider one Boolean algebra and its Stone space as a compactification of a countable discrete space. Some properties of the compactification are proved.
-
В данной работе рассматривается булева алгебра того же типа, что и алгебра, построенная Беллом, и пространство Стоуна этой булевой алгебры. Данное пространство является компактификацией счетного дискретного пространства N. Доказано существование изолированных точек в наросте данной компактификации, которые являются пределами некоторых сходящихся последовательностей. Также доказано, что любое открыто-замкнутое подмножество нашего пространства, которое гомеоморфно βω, является замыканием объединения конечного числа антицепей из N. В конце приведены два примера: замкнутое подмножество нароста без изолированных точек, которое не гомеоморфно βω\ω; подмножество нароста, которое гомеоморфно βω\ω, но не является замкнутым.
About Stone space of one Boolean algebra, pp. 19-24We consider the Boolean algebra of the same type as algebra constructed by Bell, and the Stone space of this Boolean algebra. This space is a compactification of a countable discrete space N. We prove that there are isolated points in a remainder of this compactification, which are limits of some convergent sequences. We prove that a clopen subset of our space, which is homeomorphic to βω, is a closure of the union of finitely many antichains from N. We construct two examples: a clopen subset of the remainder without isolated points, which is not homeomorphic to βω\ω; a subset of the remainder which is homeomorphic to βω\ω, but is not a clopen.
-
Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,L − n. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса y ∈ E. Критерий аппроксимации минимум величины ||y − ŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами α ∈ ω ⊂ S ⊂ En+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора y ∈ E есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.
вариационная идентификация, алгебраическая идентификация, кусочно–линейная динамическая аппроксимация, ортогональная регрессия, неградиентная оптимизацияSome properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients α ∈ ω ⊂ S ⊂ En+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.
-
Рассматриваются структурные, аппроксимативные и спектральные свойства нётеровых операторов индекса n и (−n), действующих между банаховыми пространствами B и D, где D изоморфно прямой сумме пространства B и конечномерного пространства E размерности n. Раскрыта роль теоремы С.М. Никольского о фредгольмовом операторе в изучении указанных свойств, а также в вопросе разрешимости уравнений с краевыми неравенствами. В случае сепарабельного гильбертова пространства B для однозначно разрешимых краевых задач предлагается основанная на разложении Э. Шмидта компактного оператора схема дискретизации, которая позволяет применить абстрактный вариант теоремы Рябенького–Филиппова о связи аппроксимации, устойчивости и сходимости.
реконструктивное моделирование, факторизация линейных операторов, возмущения минимального ранга, минимальное семейство циклических векторов, уравнения с краевыми неравенствамиThere are considered the structural, approximated and spectral properties of Fredholm operators of index n and (−n), acting between Banach spaces B and D, where D is isomorphic to the direct sum of B and finite–dimensional space E of dimension n. There is demonstrated the role of S.M. Nikol’skii theorem on Fredholm operator in the study of these properties as well as in the issue of solvability equations with boundary inequalities. For boundary value problems which are uniquely solvable, in the case of a separable Hilbert space B, based on Schmidt decomposition for a compact operator a scheme of discretization is proposed, and it allows application of an abstract version of Ryaben’kii–Filippov theorem on the relationship of approximation, stability and convergence.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.