Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
О расширении интеграла Римана-Стилтьеса, с. 135-152Исследуются свойства правильных функций, а также ограниченных функций, имеющих не более чем счетное множество точек разрыва (названных $\sigma$-непрерывными). Доказана теорема об интегрируемости по Риману-Стилтьесу $\sigma$-непрерывных функций по непрерывным функциям ограниченной вариации, а также предельная теорема Хелли для таких интегрируемых и интегрирующих функций. Процесс интегрирования по Риману-Стилтьесу расширяется на случай интегрирования $\sigma$-непрерывных функций по произвольным функциям ограниченной вариации: вводится $(*)$-интеграл как сумма классического интеграла Римана-Стилтьеса по непрерывной части функции ограниченной вариации и суммы произведений значений интегрируемой функции на скачки интегрирующей. Таким образом, $(*)$-интеграл позволяет интегрировать разрывные функции по разрывным. Все свойства $(*)$-интеграла выводятся непосредственно из этого определения. Так, для $(*)$-интеграла доказывается формула интегрирования по частям, теорема о перемене порядка интегрирования, а также все необходимые для дальнейшегоприменения предельные теоремы, в том числе предельная теорема типа теоремы Хелли.
функции ограниченной вариации, правильные функции, $\sigma$-непрерывные функции, интеграл Римана-Стилтьеса, $(*)$-интеграл
On the extension of a Rieman-Stieltjes integral, pp. 135-152In this paper, the properties of the regular functions and the so-called $\sigma$-continuous functions (i.e., the bounded functions for which the set of discontinuity points is at most countable) are studied. It is shown that the $\sigma$-continuous functions are Riemann-Stieltjes integrable with respect to continuous functions of bounded variation. Helly's limit theorem for such functions is also proved. Moreover, Riemann-Stieltjes integration of $\sigma$-continuous functions with respect to arbitrary functions of bounded variation is considered. To this end, a $(*)$-integral is introduced. This integral consists of two terms: (i) the classical Riemann-Stieltjes integral with respect to the continuous part of a function of bounded variation, and (ii) the sum of the products of an integrand by the jumps of an integrator. In other words, the $(*)$-integral makes it possible to consider a Riemann-Stieltjes integral with a discontinuous function as an integrand or an integrator. The properties of the (*)-integral are studied. In particular, a formula for integration by parts, an inversion of the order of the integration theorem, and all limit theorems necessary in applications, including a limit theorem of Helly's type, are proved.
-
В работе рассматривается пространство Стоуна булевой алгебры подмножеств одного счетного частично упорядоченного множества. Главной особенностью этого множества является наличие бесконечного числа непосредственных последователей у каждого его элемента. Отсюда следует, что каждый фиксированный ультрафильтр данного пространства Стоуна является неизолированной точкой, а подмножество свободных ультрафильтров всюду плотно. В работе дана классификация точек пространства, доказано, что есть свободные ультрафильтры, которые не являются пределами последовательностей фиксированных ультрафильтров, а также свободные ультрафильтры, определяемые цепями частично упорядоченного множества. Рассмотрены кардинальные инварианты подпространства свободных ультрафильтров. Доказано, что это подпространство имеет счетное число Суслина, но не сепарабельно.
The paper concerns the Stone space of the Boolean algebra of subsets of one countable partially ordered set. The main feature of this set is the existence of countably many successors of each of its elements. From this property it follows that every fixed ultrafilter of this Stone space is a nonisolated point; the subset of free ultrafilters is dense everywhere. The classification of space points is given; the fact that there are free ultrafilters, which are not limits of sequences of fixed ultrafilters, as well as free ultrafilters determined by chains of partially ordered set, is proved. The cardinal invariants of the subspace of free ultrafilters are considered. It is shown that this subspace has the countable Suslin number, but is not separable.
-
Асимптотическое распределение времени попадания для критических отображений на окружности, с. 365-383Хорошо известно, что преобразование ренормгруппы $\mathcal{R}$ имеет единственную неподвижную точку $f_ {cr}$ в пространстве критических $C^{3}$-гомеоморфизмов окружности с одной кубической критической точкой $x_{cr}$ и числом вращения равным золотому сечению $\overline{\rho}: =\frac{\sqrt{5} -1}{2}.$ Обозначим через $Cr(\overline{\rho})$ множество всех критических отображений окружности $C^ {1}$-сопряженных к $f_{cr}.$ Пусть $f\in Cr(\overline{\rho})$ и $\mu:=\mu_{f}$ --- единственная вероятностная инвариантная мера для $f.$ Зафиксируем $\theta \in (0,1).$ Для каждого $n\geq 1$ определим $c_{n}:=c_{n}(\theta)$ такое, что $\mu([x_{cr}, c_{n}]) = \theta\cdot\mu([x_{cr}, f^{q_{n}} (x_{cr})]),$ где $q_{n}$ --- время первого возврата линейного вращения $f_{\overline{\rho}}.$ Мы исследуем закон сходимости перемасштабированного точечного процесса времени попадания. Мы показываем, что предельное распределение сингулярно относительно меры Лебега.
It is well known that the renormalization group transformation $\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ Denote by $Cr(\overline{\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\in Cr(\overline{\rho})$ and let $\mu:=\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\theta \in(0,1).$ For each $n\geq1$ define $c_{n}:=c_{n}(\theta)$ such that $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\overline{\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w.r.t. the Lebesgue measure.
-
О теореме Шимоды, с. 17-31Настоящая работа посвящена теореме Шимоды о голоморфности функции $f(z,w)$, которая является голоморфной по $w\in V$ при фиксированном $z\in U$ и голоморфна по $z\in U$ при фиксированном $w\in E$, где $E\subset V$ - счетное множество, по крайней мере, с одной предельной точкой в $V$. Шимода доказывает, что в этом случае $f(z,w)$ голоморфно в $U\times V$, за исключением нигде не плотного замкнутого подмножества $U\times V.$ Рассматривается обратная задача и доказывается, что для любого заранее заданного нигде не плотного замкнутого подмножества $S\subset U$ существует голоморфная функция, удовлетворяющая теореме Шимоды на $U\times V\subset {\mathbb C}^{2}$, не голоморфная на $S\times V$. Кроме того, исследованы дополнительные условия, которые влекут за собой пустые множества особенностей в теореме Шимоды. Доказывается обобщение в случае, когда функция имеет переменный радиус голоморфности по одному из направлений.
On Shimoda's Theorem, pp. 17-31The present work is devoted to Shimoda's Theorem on the holomorphicity of a function $f(z,w)$ which is holomorphic by $w\in V$ for each fixed $z\in U$ and is holomorphic by $z\in U$ for each fixed $w\in E$, where $E\subset V$ is a countable set with at least one limit point in $V$. Shimoda proves that in this case $f(z,w)$ is holomorphic in $U\times V$ except for a nowhere dense closed subset of $U\times V$. We prove the converse of this result, that is for an arbitrary given nowhere dense closed subset of $U$, $S\subset U$, there exists a holomorphic function, satisfying Shimoda's Theorem on $U\times V\subset {\mathbb C}^{2}$, that is not holomorphic on $S\times V$. Moreover, we observe conditions which imply empty exception sets on Shimoda's Theorem and prove generalizations of Shimoda's Theorem.
-
В работе продолжаются исследования автора по теории правильных функций (функций, имеющих в каждой точке конечные односторонние пределы) и $\sigma$-непрерывных функций (ограниченных функций, имеющих не более, чем счетное множество точек разрыва), а также по теории *-интеграла. Доказана представимость правильной функции в виде суммы непрерывной справа и непрерывной слева функций ($rl$-представимость правильной функции).
Показано, что общий вид линейного непрерывного функционала в пространстве правильных функций ($\sigma$-непрерывных функций) — это *-интеграл правильной ($\sigma$-непрерывной) функции по функции ограниченной вариации.
правильные функции, $\sigma$-непрерывные функции, $rl$-представление, *-интеграл, линейный непрерывный функционал
On the general form of a linear continuous functional in the space of regulated functions, pp. 571-580The author's research continues on the theory of regulated functions (functions having finite one-sided limits at each point) and $\sigma$-continuous functions (bounded functions having no more than a countable set of discontinuity points), as well as on the theory of the *-integral. The representability of a regulated function in the form of a sum of a right-continuous function and a left-continuous function is proved ($rl$-representability of the proper function).
It is shown that the general form of a linear continuous functional in the space of regulated functions ($\sigma$-continuous functions) is the *-integral of a regulated ($\sigma$-continuous) function over a function of bounded variation.
-
Мягкий рациональный криволинейный интеграл, с. 578-596Теория мягких множеств — это новая область математики, которая имеет дело с неопределенностями. Приложения теории мягких множеств широко распространены в различных областях науки и социальных наук, таких как принятие решений, информатика, распознавание образов, искусственный интеллект и т.д. Важность мягких теоретико-множественных версий математического анализа ощущается в нескольких областях информатики. В этой статье предлагаются некоторые концепции мягкого градиента функции и мягкого интеграла, аналога криволинейного интеграла в классическом анализе. Установлены основные свойства мягких градиентов. Найдено необходимое и достаточное условие, при котором множество может быть подмножеством мягкого градиента некоторой функции. Доказано включение мягкого градиента в мягкий интеграл. Установлены полуаддитивность и положительная однородность мягкого интеграла. Получены оценки мягкого интеграла и размера его отрезка. Полуаддитивность относительно верхнего предела интегрирования доказана. Кроме того, эта статья расширяет теоретические развитие мягкого рационального криволинейного интеграла и связанных областей для повышения функциональности с точки зрения вычислительных систем.
Soft rational line integral, pp. 578-596Soft set theory is a new area of mathematics that deals with uncertainties. Applications of soft set theory are widely spread in various areas of science and social science viz. decision making, computer science, pattern recognition, artificial intelligence, etc. The importance of soft set-theoretical versions of mathematical analysis has been felt in several areas of computer science. This paper suggests some concepts of a soft gradient of a function and a soft integral, an analogue of a line integral in classical analysis. The fundamental properties of soft gradients are established. A necessary and sufficient condition is found so that a set can be a subset of the soft gradient of some function. The inclusion of a soft gradient in a soft integral is proved. Semi-additivity and positive uniformity of a soft integral are established. Estimates are obtained for a soft integral and the size of its segment. Semi-additivity with respect to the upper limit of integration is proved. Moreover, this paper enriches the theoretical development of a soft rational line integral and associated areas for better functionality in terms of computing systems.
-
Для игровой задачи удержания траекторий абстрактной динамической системы в заданном множестве исследуются соотношения метода программных итераций и конструкций, связанных с построением операторно выпуклой оболочки множества посредством предоболочки. В рамках данных соотношений процедура построения упомянутой оболочки реализуется в форме, двойственной по отношению к процедуре на основе метода программных итераций. Решение задачи удержания определяется в классе многозначных квазистратегий (неупреждающих откликов на реализации неопределенных факторов процесса). Показано, что множество успешной разрешимости задачи удержания определяется в виде предела итерационной процедуры на пространстве множеств, элементами которых являются позиции игры, а также установлена структура разрешающих квазистратегий.
For an abstract dynamic system the game problem of trajectories retention in a given set is considered. The relations of the method of programmed iterations and the constructions associated with the generation of the operator convex hull with the help of prehull are investigated. Within these relations the procedure of constructing the hull is realized in the form dual to the procedure based on the method of programmed iterations. The retention problem solution is determined in the class of multi-valued quasistrategies (nonanticipating responses to the realization of uncertain factors of the process). It is shown that the set of successful solvability of the retention problem is defined as the limit of the iterative procedure in the space of sets, elements of which are positions of the game; the structure of resolving quasistrategies is also provided.
-
Рассматривается управляемая механическая система с сухим трением и позиционным импульсным или позиционным разрывным управлением. Она может быть представлена в виде уравнений Лагранжа второго рода:
A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, t∈I=[t0,t0+T]. (1)
Целью управления является движение системы по множеству S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (задача стабилизации) или в окрестности этого множества (задача сближения). Первая задача решается с использованием позиционного управления релейного типа с ограниченными ресурсами, для которых режим декомпозиции является устойчивым скользящим режимом системы (1). При недостаточности ресурсов обычного разрывного управления движение системы в окрестности множества S происходит при помощи высокочастотных импульсных воздействий на нее в дискретные моменты времени в импульсно-скользящем режиме, равномерный предел которого (идеальный импульсно-скользящий режим) совпадает с режимом декомпозиции. Отличительной особенностью поставленных задач является наличие в системе (1) сил сухого трения, которые, вообще говоря, могут рассматриваться как некоторые неуправляемые разрывные или многозначные возмущения.
Основные понятия даны во введении статьи. В первом разделе показана связь между идеальными импульсно-скользящими режимами включения
A(t,x)ẋ∈F(t,x)+u,
где u - позиционное импульсное управление, и скользящими режимами системы
A(t,x)ẋ∈F(t,x)+B(t,x)ũ(t,x)
с позиционным разрывным управлением. Второй раздел посвящен системам вида (1). В третьем разделе рассматривается важное для приложений целевое множество S системы (1), которое определяется векторной функцией σ(t,q,dq/dt)=dq/dt-φ(t,q). Для последнего случая использованы более простые и содержательные условия, гарантирующие существование скользящих режимов для системы с позиционным разрывным управлением. В заключении рассмотрен пример.
дифференциальное включение, позиционное импульсное управление, импульсно-скользящий режим, скользящий режимWe consider a controlled mechanical system with dry friction and positional pulse or positional discontinuous control. It can be presented in a form of Lagrange equations of the second kind
A(t,q)d2q/dt2=g(t,q,dq/dt)+QA(t,q,dq/dt)+QT(t,q,dq/dt)+u, t∈I=[t0,t0+T]. (1)
The goal of the control is the motion of the system (1) in set S={(t,q,dq/dt)∈I×Rn×Rn: σ(t,q,dq/dt)=0} (problem of stabilization) or in the neighborhood of set S (approach problem). The first problem is solved with discontinuous positional control of relay type with limited resources, for which a decomposition mode is a stable sliding mode of system (1). In case of insufficiency of resources of discontinuous control the motion of the controlled system in the neighborhood of set S can be implemented under high-frequency impacts on the system in discrete time moments in the pulse-sliding mode, the uniform limit of which (an ideal pulse-sliding mode) is equal to the decomposition mode. The distinctive feature of the assigned problems is dry friction in the system (1), and said dry fiction, generally speaking, can be considered as uncontrollable discontinuous or multivalued perturbations.
Main definitions are given in the introduction of the article. In the first section the connection between ideal pulse-sliding modes of inclusion
A(t,x)ẋ∈F(t,x)+u,
where u is a positional pulse control, and sliding modes of system
A(t,x)ẋ∈F(t,x)+B(t,x)ũ(t,x)
with a positional discontinuous control is considered. The second section is devoted to systems of type (1). In the third section we consider set S, which is important in relation to applications and is defined by the vector function σ(t,q,dq/dt)=dq/dt-φ(t,q). For the last case more simple and informative conditions of the existence of sliding modes for a system with discontinuous controls were used. An example was considered in conclusion.
-
Предмет изучения - псевдовершины краевого множества, необходимые для аналитического и численного конструирования сингулярных ветвей обобщенного (минимаксного) решения задачи Дирихле для уравнения типа эйконала. Рассмотрен случай переменной гладкости границы краевого множества, при котором порядок гладкости в точках рассмотрения понижается до минимально возможного значения - до единицы. Получены необходимые условия существования псевдовершин, выраженные в терминах односторонних частичных пределов дифференциальных соотношений, зависящих от свойств локальных диффеоморфизмов, которые определяют эти точки. Приведен пример, иллюстрирующий приложения полученных результатов при решении задачи управления по быстродействию на плоскости.
уравнение в частных производных первого порядка, минимаксное решение, быстродействие, волновой фронт, диффеоморфизм, эйконал, функция оптимального результата, сингулярное множество, симметрия, псевдовершинаThe subject of the study is pseudo-vertices of a boundary set, which are necessary for the analytical and numerical construction of singular branches of the generalized (minimax) solution of the Dirichlet problem for an eikonal type equation. The case of variable smoothness of the boundary set boundary is considered, under which the order of smoothness at the points of consideration is reduced to the lowest possible value - up to one. Necessary conditions for the existence of pseudo-vertices are obtained, expressed in terms of one-sided partial limits of differential relations, depending on the properties of local diffeomorphisms that determine these points. An example is given that illustrates the application of the results obtained while solving the velocity problem.
-
Рассматривается задача о допустимой маршрутизации системы циклов, каждый из которых включает внешнее перемещение и работы, связанные с посещением мегаполисов (непустых конечных множеств). В исходной постановке задано ограничение ресурсного характера, которое должно соблюдаться на каждом цикле в процессе перемещений. Условия разрешимости в данной задаче связываются с экстремумом вспомогательной задачи маршрутизации «на узкие места» без упомянутого ограничения, в которой используется аппарат широко понимаемого динамического программирования. Частным случаем постановки является известная задача курьера «на узкие места», которая, в частности, может использоваться, как представляется, для целей прокладывания маршрутов транспортного средства (самолет, вертолет), имеющего целью осуществить заданную систему перевозок с ограниченным на каждом перелете запасом топлива. Построен алгоритм, реализованный на ПЭВМ.
Dynamic programming and questions of solvability of route bottleneck problem with resource constraints, pp. 569-592The article deals with the problem of admissible routing for a system of cycles each of which contains exterior permutation and works connected with megalopolises (non-empty finite sets) visiting. In the initial setting, a resource constraint is given; this constraint should be fulfilled for every cycle under permutation. The solvability conditions in this problem are connected with the extremum of the auxiliary bottleneck routing problem without above-mentioned constraint, in which the apparatus of widely understood dynamic programming (DP) is used. A particular case of the setting is the known bottleneck courier problem which can be used (in particular) for routing a vehicle (airplane or helicopter) aiming to realize the given shipping system with a limited fuel reserve on each flight. An algorithm implemented on a personal computer is constructed.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.