Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'rolling motion':
Найдено статей: 9
  1. В работе исследуется динамика диска, катящегося по абсолютно шероховатой плоскости. Доказано, что уравнения движения обладают инвариантной мерой с непрерывной плотностью только в двух случаях: при динамически симметричном диске и диске со специальным распределением масс. В первом случае уравнения движения обладают двумя дополнительными интегралами и являются интегрируемыми в квадратурах по теореме Эйлера-Якоби. Во втором случае с помощью отображения Пуанкаре показано отсутствие дополнительных интегралов. В обоих случаях для любой области фазового пространства, переносимой потоком системы, ее объем, вычисленный с помощью плотности инвариантной меры, сохраняется. В неголономной механике известны как системы, допускающие инвариантную меру, так и системы, у которых она отсутствует.

    This paper addresses the dynamics of a disk rolling on an absolutely rough plane. It is proved that the equations of motion have an invariant measure with continuous density only in two cases: a dynamically symmetric disk and a disk with a special mass distribution. In the former case, the equations of motion possess two additional integrals and are integrable by quadratures by the Euler-Jacobi theorem. In the latter case, the absence of additional integrals is shown using a Poincaré map. In both cases, the volume of any domain in phase space (calculated with the help of the density) is preserved by the phase flow. Nonholonomic mechanics is populated with systems both with and without an invariant measure.

  2. В данной работе исследуется качение сферического волчка с осесимметричным распределением масс по гладкой горизонтальной плоскости, совершающей периодические вертикальные колебания. Для рассматриваемой системы получены уравнения движения и законы сохранения. Показано, что система допускает два положения равновесия, соответствующих равномерным вращениям волчка относительно вертикально расположенной оси симметрии. Положение равновесия устойчиво, когда центр масс расположен ниже геометрического центра и неустойчиво, если центр масс расположен выше него. Проведена редукция уравнений движения к системе с полутора степенями свободы. Рассматриваемая редуцированная система представлена в виде малого возмущения задачи о движении волчка Лагранжа. При помощи метода Мельникова показано, что устойчивая и неустойчивая ветви сепаратрисы трансверсально пересекаются между собой, что говорит о неинтегрируемости рассматриваемой задачи. Приведены результаты компьютерного моделирования динамики волчка вблизи неустойчивого положения равновесия.

    This paper investigates the rolling motion of a spherical top with an axisymmetric mass distribution on a smooth horizontal plane performing periodic vertical oscillations. For the system under consideration, equations of motion and conservation laws are obtained. It is shown that the system admits two equilibrium points corresponding to uniform rotations of the top about the vertical symmetry axis. The equilibrium point is stable when the center of mass is located below the geometric center, and is unstable when the center of mass is located above it. The equations of motion are reduced to a system with one and a half degrees of freedom. The reduced system is represented as a small perturbation of the problem of the Lagrange top motion. Using Melnikov’s method, it is shown that the stable and unstable branches of the separatrix intersect transversally with each other. This suggests that the problem is nonintegrable. Results of computer simulation of the top dynamics near the unstable equilibrium point are presented.

  3. В данной работе исследуется задача о качении роллер-рейсера по колеблющейся плоскости. Получены уравнения движения роллер-рейсера в виде системы четырех неавтономных дифференциальных уравнений. Указаны два семейства частных решений, которые соответствуют прямолинейным движениям роллер-рейсера вдоль и перпендикулярно колебаниям плоскости. Приведены численные оценки мультипликаторов решений, соответствующих движению робота вдоль колебаний. Также указан частный случай, в котором удается получить аналитические выражения мультипликаторов. В этом случае показано, что в линейном приближении движение вдоль колебаний «свернутого» роллер-рейсера орбитально устойчиво при движении шарниром вперед, а все остальные движения неустойчивы. Показано, что в линейном приближении семейство, соответствующее движению робота, перпендикулярно колебаниям плоскости — неустойчиво.

    This paper addresses the problem of a roller-racer rolling on an oscillating plane. Equations of motion of the roller-racer in the form of a system of four nonautonomous differential equations are obtained. Two families of particular solutions are found which correspond to rectilinear motions of the roller-racer along and perpendicular to the plane's oscillations. Numerical estimates are given for the multipliers of solutions corresponding to the motion of the robot along the oscillations. Also, a special case is presented in which it is possible to obtain analytic expressions of the multipliers. In this case, it is shown that the motion along oscillations of a “folded” roller-racer is linearly orbitally stable as it moves with its joint ahead, and that all other motions are unstable. It is shown that, in a linear approximation, the family corresponding to the motion of the robot is perpendicular to the plane's oscillations, that is, it is unstable.

  4. Рассматривается качение неуравновешенного динамически симметричного шара по плоскости без проскальзывания в присутствии внешнего магнитного поля. Предполагается, что шар может полностью или частично состоять из диэлектрического, ферромагнитного или сверхпроводящего материалов. Согласно существующей феноменологической теории в этом случае при изучении динами шара требуется учитывать момент силы Лоренца, момент Барнетта-Лондона и момент Эйнштейна-де Гааза. В рамках данной математической модели нами получены условия существования интегралов движения, которые позволяют свести интегрирование уравнений движения к квадратуре аналогичной квадратуре Лагранжа для тяжелого твердого тела.

    We consider the rolling of an unbalanced dynamically symmetric ball along a plane without slipping in the presence of an external magnetic field. We assume that the ball may be wholly or partially composed of dielectric, ferromagnetic, or superconducting materials. According to the existing phenomenological theory, in this case, when studying the dynamics of a ball, it is required to take into account the Lorentz force moment, Barnett-London moment, and Einstein-de Haas moment. Within the framework of this mathematical model, we obtain the conditions for the existence of integrals of motion, which allow us to reduce the integration of equations of motion to a quadrature similar to the Lagrange quadrature for a heavy rigid body.

  5. В работе рассматривается задача программного управления движением динамически несимметричного уравновешенного шара на плоскости при помощи трех двигателей-маховиков при условии, что шар катится без проскальзывания. Центр масс механической системы совпадает с геометрическим центром шара. Найдены законы управления, обеспечивающие движение шара вдоль базовых траекторий (прямой и окружности), а также по произвольно заданной кусочно-гладкой траектории на плоскости. В данной работе предлагается кватернионная модель движения шара, которая позволяет обойтись без традиционного использования тригонометрических функций, а кинематические уравнения записать в виде линейных дифференциальных уравнений, исключающих недостатки связанные с применением углов Эйлера. Решение поставленной задачи осуществляется с применением кватернионной функции времени, которая определяется видом траектории и законом движения точки контакта шара с плоскостью. Приведен пример управления движением шара и выполнена визуализация движения системы шар-маховики в пакете компьютерной алгебры.

    Mityushov E.A., Misyura N.E., Berestova S.A.
    Quaternion model of programmed control over motion of a Chaplygin ball, pp. 408-421

    This paper deals with the problem of program control of the motion of a dynamically asymmetric balanced ball on the plane using three flywheel motors, provided that the ball rolls without slipping. The center of mass of the mechanical system coincides with the geometric center of the ball. Control laws are found to ensure the motion of the ball along the basic trajectories (line and circle), as well as along an arbitrarily given piecewise smooth trajectory on the plane. In this paper, we propose a quaternion model of ball motion. The model does not require using the traditional trigonometric functions. Kinematic equations are written in the form of linear differential equations eliminating the disadvantages associated with the use of Euler angles. The solution of the problem is carried out using the quaternion function of time, which is determined by the type of trajectory and the law of motion of the point of contact of the ball with the plane. An example of ball motion control is given and a visualization of the ball-flywheel system motion in a computer algebra package is presented.

  6. Рассматривается шар Чаплыгина на плоскости, на который действует сила трения, удовлетворяющая условию: (F,u)<0 при u≠0 и F=0 при u=0, где u - скорость проскальзывания шара. Контакт с опорной плоскостью предполагается точечным (иными словами, отсутствуют пятно контакта и момент трения верчения). Основной задачей работы является нахождение множества возможных стационарных (финальных) движений и определение типов их устойчивости.

    В работе показано, что стационарных движений возможно ровно три; все они представляют собой равномерные и прямолинейные качения шара по прямой без проскальзывания, при которых он вращается вокруг одной из главных осей тензора инерции. При этом вращение вокруг оси наибольшего момента инерции устойчиво, вокруг среднего и наименьшего  неустойчиво.

    The Chaplygin ball on a plane is considered under the action of the friction force which satisfies the following condition: (F,u)<0 as u u≠0 and F=0 as u=0, where u is the gliding velocity. The ball is supposed to have a point contact with the supporting plane (this means that the contact spot is absent and also there is no rotation friction torque). The main task of the paper is to determine a set of possible stationary (or final) motions and their stability.

    In the current paper it is shown that exactly three stationary motions are possible; these motions represent straightline uniform rolling motions of the ball without sliding, at that the ball is rotating around one of the primary axes of the inertia tensor. Rotation around the axis of the greatest moment of inertia is stable, around the middle one and the lowest one it is unstable.

  7. Исследована устойчивость катящейся по горизонтальной плоскости сферической оболочки с гироскопом Лагранжа внутри. Проведен линейный анализ устойчивости для верхнего и нижнего положений волчка, построена бифуркационная диаграмма системы, получены и проанализированы траектории точки контакта при различных значениях интегралов движения.

    In the paper we study the stability of a spherical shell rolling on a horizontal plane with Lagrange’s gyroscope inside. A linear stability analysis is made for the upper and lower position of a top. A bifurcation diagram of the system is constructed. The trajectories of the contact point for different values of the integrals of motion are constructed and analyzed.

  8. Работа посвящена экспериментальному исследованию влияния трения качения на динамику робота-колеса. Робот приводится в движение за счет изменения собственного гиростатического момента с помощью управляемого вращения установленного на нем ротора. Задача рассматривается в предположении, что центр масс системы не совпадает с ее геометрическим центром. В работе получены уравнения, описывающие динамику рассматриваемой системы, и приведен пример управляемого движения колеса при задании постоянного углового ускорения ротора. Приведено описание конструкции робота-колеса и предложена методика экспериментального определения коэффициента трения качения. Для проверки предложенной математической модели проведены экспериментальные исследования управляемого движения робота-колеса. В работе показано, что теоретические и экспериментальные результаты качественно совпадают, но имеют количественное отличие.

    This paper presents an experimental investigation of the influence of rolling friction on the dynamics of a robot wheel. The robot is set in motion by changing the proper gyrostatic momentum using the controlled rotation of a rotor installed in the robot. The problem is considered under the assumption that the center of mass of the system does not coincide with its geometric center. In this paper we derive equations describing the dynamics of the system and give an example of the controlled motion of a wheel by specifying a constant angular acceleration of the rotor. A description of the design of the robot wheel is given and a method for experimentally determining the rolling friction coefficient is proposed. For the verification of the proposed mathematical model, experimental studies of the controlled motion of the robot wheel are carried out. We show that the theoretical results qualitatively agree with the experimental ones, but are quantitatively different.

  9. В работе рассматривается динамика кельтского камня, моделируемая тяжелым уравновешенным эллипсоидом вращения, катящимся без проскальзывания по неподвижной горизонтальной плоскости. При этом центральный эллипсоид инерции тоже представляет собой эллипсоид вращения. При наличии углового смещения между двумя эллипсоидами (характеризующим динамическую несимметрию тела) наблюдаются новые динамические эффекты, которые родственны реверсу в движении кельтских камней. Однако, в отличии от традиционной модели кельтского камня, представляющего собой усеченный двухосный параболоид, в рассматриваемой постановке возможны движения, являющиеся суперпозицией реверса (смена на противоположное направление вращения) и переворота (смена на противоположные оси вращения). При этом указанные реверс и переворот, при надлежащих энергиях и распределениях масс, могут повторяться неоднократно. Возможны также движения, представляющие собой только многократный переворот или реверс.

    The paper considers the dynamics of a rattleback as a model of a heavy balanced ellipsoid of revolution rolling without slippage on a fixed horizontal plane. Central ellipsoid of inertia is an ellipsoid of revolution as well.  In presence of the angular displacement between two ellipsoids, there occur dynamical effects somewhat similar to the reverse fenomena in the rattleback dynamics. However, unlike a customary rattleback model (a truncated biaxial paraboloid) our system allows the motions which are superposition of the reverse motion (reverse of the direction of spinning) and the turn over (change of the axis of rotation). With appropriate values of energies and mass distribution, this effect (reverse + turn over) can occur more than once. Such motions as repeated reverse or repeated turn over are also possible.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref