Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается задача простого группового преследования группы из m убегающих (m ≥ 1) с равными возможностями. Говорят, что в задаче преследования одного убегающего (m = 1) происходит многократная поимка, если заданное количество преследователей ловят его, при этом моменты поимки могут не совпадать. В задаче об одновременной поимке одного убегающего требуется, чтобы моменты поимки совпадали. В работе введено понятие одновременной многократной поимки группы убегающих (m ≥ 2). Одновременная многократная поимка всей группы убегающих происходит, если в результате преследования происходит одновременная многократная поимка каждого убегающего, причем в один и тот же момент времени. В терминах начальных позиций участников получены необходимые и достаточные условия одновременной многократной поимки всей группы убегающих.
поимка, многократная поимка, одновременная многократная поимка, преследование, убегание, дифференциальные игры, конфликтно управляемые процессы.The present paper deals with the problem of simple pursuit of group of m evaders (m ≥ 1) with equal opportunities. We say that a multiple capture in the problem of pursuit of one evader (m = 1) holds if the specified number of pursuers catch him, possibly at different times. The problem of the simultaneous capture of one evader requires that capture moments coincide. We introduce the concept of multiple simultaneous capture of the whole group of evaders (m ≥ 2). We say that the simultaneous multiple capture of the whole group of evaders holds if the simultaneous multiple capture of every evader holds in the same time. We obtain necessary and sufficient conditions for simultaneous multiple capture of the whole group of evaders in terms of initial positions of the participants.
-
В качестве математической модели конфликта рассматривается бескоалиционная игра Γ двух участников при неопределенности. О неопределенности известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют. Для оценки риска в Γ привлекается функция риска по Сэвиджу (из принципа минимаксного сожаления). Качество функционирования участников конфликта оценивается по двум критериям - исходам и рискам, при этом каждый из них стремится увеличить исход и одновременно уменьшить риск. На основе синтеза принципов минимаксного сожаления и гарантированного результата, равновесности по Нэшу и оптимальности по Слейтеру, а также решения иерархической двухуровневой игры по Штакельбергу формализуется понятие гарантированного по исходам (выигрышам) и рискам равновесия в Γ. Приведен пример. Затем устанавливается существование такого решения в смешанных стратегиях при обычных ограничениях в математической теории игр.
стратегии, ситуации, неопределенности, бескоалиционная игра, равновесность по Нэшу, максимум и минимум по СлейтеруAs a mathematical model of conflict the non-cooperation game Γ of two players under uncertainty is considered. About uncertainty only the limits of change are known. Any characteristics of probability are absent. To estimate risk in Γ we use Savage functions of risk (from principle of minimax regret). The quality of functioning of conflict's participants is estimated according to two criteria: outcomes and risks, at that each of the participants tries to increase the outcome and simultaneously to decrease the risk. On the basis of synthesis of principles of minimax regret and guaranteed result, Nash equilibrium and Slater optimality as well as solution of the two-level hierarchical Stackelberg game, the notion of guaranteed equilibrium in Γ (outcomes (prize) and risks) is formalized. We give the example. Then the existence of such a solution in mixed strategies at usual limits in mathematical game theory is established.
-
Рассматривается задача преследования группы из m убегающих (m≥1) в конфликтно управляемом процессе с равными возможностями. Говорят, что в задаче преследования одного убегающего (m=1) происходит многократная поимка, если заданное количество преследователей ловят его, при этом моменты поимки могут не совпадать. В задаче об одновременной многократной поимке одного убегающего требуется, чтобы моменты поимки совпадали. Одновременная многократная поимка всей группы убегающих (m≥2) происходит, если в результате преследования происходит одновременная многократная поимка каждого убегающего, причем в один и тот же момент времени. В терминах начальных позиций участников получены необходимые и достаточные условия одновременной многократной поимки всей группы убегающих.
поимка, многократная поимка, одновременная многократная поимка, преследование, убегание, дифференциальные игры, конфликтно управляемые процессыThe present paper deals with the problem of pursuit of the group of m evaders (m≥1) in a conflict-controlled process with equal opportunities. We say that a multiple capture in the problem of pursuit of one evader (m=1) holds if the specified number of pursuers catch him, possibly at different times. The problem of the simultaneous multiple capture of one evader requires that capture moments coincide. We say that the simultaneous multiple capture of the whole group of evaders (m≥2) holds if the simultaneous multiple capture of every evader holds at the same time. We obtain necessary and sufficient conditions for simultaneous multiple capture of the whole group of evaders in terms of initial positions of the participants.
-
Рассматривается задача преследования группы жестко скоординированных убегающих в нестационарном конфликтно управляемом процессе с равными возможностями: $$\begin{array}{llllllllcccc} P_i & : & \dot x_i = A(t)x_i + u_i,& u_i \in U(t), & x_i(t_0) = X_i^0, & i = 1,2, \dots, n, \\ E_j & : & \dot y_j = A(t)y_j + v, & v \in U(t) , & y_j(t_0) = Y_j^0 , & j = 1,2, \dots, m. \\ \end{array}$$ Говорят, что в задаче преследования происходит многократная поимка, если заданное количество преследователей ловят убегающих, при этом моменты поимки могут не совпадать: $$x_\alpha (\tau_\alpha) = y_{j_\alpha}(\tau_\alpha), \quad \alpha \in \Lambda, \quad \Lambda \subset \{1,2, \dots, n\}, \quad |\Lambda| = b\quad (n \geqslant b \geqslant 1), \\ j_\alpha \subset \{1,2, \dots, m\}.$$ В задаче о нестрогой одновременной многократной поимке требуется, чтобы моменты поимки совпадали: $$x_\alpha (\tau) = y_{j_\alpha}(\tau), \quad \alpha \in \Lambda.$$ Одновременная многократная поимка происходит, если совпадают наименьшие моменты поимки: $$x_\alpha (\tau) = y_{j_\alpha}(\tau), \quad x_\alpha(s) \ne y_{j_\alpha}(s), \quad s \in [t_0, \tau), \quad \alpha \in \Lambda.$$ В данной работе получены необходимые и достаточные условия многократной и нестрогой одновременной многократной поимок.
поимка, многократная поимка, одновременная многократная поимка, преследование, убегание, дифференциальные игры, конфликтно управляемые процессыThe present paper deals with the problem of pursuit of a group of rigidly coordinated evaders in a nonstationary conflict-controlled process with equal opportunities $$\begin{array}{llllllllcccc} P_i & : & \dot x_i = A(t)x_i + u_i,& u_i \in U(t), & x_i(t_0) = X_i^0, & i = 1,2, \dots, n, \\ E_j & : & \dot y_j = A(t)y_j + v, & v \in U(t) , & y_j(t_0) = Y_j^0 , & j = 1,2, \dots, m. \\ \end{array}$$ We say that a multiple capture in the problem of pursuit holds if the specified number of pursuers catch evaders, possibly at different times $$x_\alpha (\tau_\alpha) = y_{j_\alpha}(\tau_\alpha), \quad \alpha \in \Lambda, \quad \Lambda \subset \{1,2, \dots, n\}, \quad |\Lambda| = b\quad (n \geqslant b \geqslant 1), \\ j_\alpha \subset \{1,2, \dots, m\}.$$ The problem of nonstrict simultaneous multiple capture requires that capture moments coincide $$x_\alpha (\tau) = y_{j_\alpha}(\tau), \quad \alpha \in \Lambda.$$ The problem of a simultaneous multiple capture requires that lowest capture moments coincide $$x_\alpha (\tau) = y_{j_\alpha}(\tau), \quad x_\alpha(s) \ne y_{j_\alpha}(s), \quad s \in [t_0, \tau), \quad \alpha \in \Lambda.$$ In this paper we obtain necessary and sufficient conditions for simultaneous multiple capture and nonstrict simultaneous multiple capture.
-
Рассматривается движение математического маятника, установленного на подвижной платформе. Платформа вращается вокруг заданной вертикали с постоянной угловой скоростью $\omega$ и одновременно совершает гармонические колебания с амплитудой $A$ и частотой $\Omega$ вдоль вертикали. Амплитуда колебаний предполагается малой по сравнению с длиной маятника $\ell$ $(A=\varepsilon \ell,\ 0<\varepsilon \ll 1) $. Рассмотрено три типа движений. Для первых двух типов маятник неподвижен относительно платформы и располагается вдоль ее оси вращения (висящий и перевернутый маятники). Для третьего типа движений маятник совершает периодические колебания с периодом, равным периоду вертикальных колебаний платформы. Эти колебания имеют амплитуду порядка $\varepsilon$ и при $\varepsilon = 0$ переходят в положение относительного равновесия, в котором маятник составляет постоянный угол с вертикалью. Третий тип движения существует, если угловая скорость вращения платформы достаточно большая ($\omega^2 \ell>g$, где $g$ - ускорение свободного падения). В статье решается задача об устойчивости этих трех типов движения маятника для малых значений $\varepsilon$. Рассмотрены как нерезонансные случаи, так и случаи, когда в системе реализуются резонансы второго, третьего и четвертого порядка. В пространстве трех безразмерных параметров задачи $g/(\omega^2 \ell)$, $\Omega / \omega$ и $\varepsilon$ выделены области устойчивости по Ляпунову и области неустойчивости. Исследование опирается на классические методы и алгоритмы Ляпунова, Пуанкаре и Биркгофа, а также на современные методы анализа динамических систем при помощи КАМ-теории.
The motion of a mathematical pendulum mounted on a movable platform is considered. The platform rotates around a given vertical with a constant angular velocity $\omega$ and simultaneously executes harmonic oscillations with amplitude $A$ and frequency $\Omega$ along the vertical. The amplitude of oscillations is assumed to be small in comparison with the length $\ell$ of the pendulum $(A=\varepsilon \ell,\ 0<\varepsilon \ll 1) $. Three types of motions are considered. For the first two types, the pendulum is stationary relative to the platform and is located along its axis of rotation (hanging and inverted pendulum). For the third type of motions, the pendulum performs periodic oscillations with a period equal to the period of vertical oscillations of the platform. These oscillations have an amplitude of order $\varepsilon$ and at $\varepsilon = 0$ become relative equilibrium positions, in which the pendulum is a constant angle from the vertical. The motion of the third type exists if the angular velocity of rotation of the platform is large enough ($\omega^2 \ell>g$, $g$ is acceleration of gravity). In this paper, the problem of stability of these three types of pendulum motions for small values of $\varepsilon$ is solved. Both nonresonant cases and cases where resonances of the second, third and fourth orders occur in the system are considered. In the space of three dimensionless parameters of the problem, Lyapunov's stability and instability regions are singled out. The study is based on classical methods and algorithms due to Lyapunov, Poincaré and Birkhoff, as well as on modern methods of dynamical system analysis using Kolmogorov-Arnold-Moser (KAM) theory.
-
О влиянии пористости на режим развития неустойчивости течения жидкости над слоем пористой среды, с. 134-144Описаны результаты линейного анализа устойчивости плоскопараллельного течения несжимаемой жидкости над слоем насыщенной пористой среды при различных значениях ее пористости. Рассматривается ограниченная двухслойная система, состоящая из слоя однородной недеформируемой пористой среды конечной толщины и слоя несжимаемой однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как свободная, но недеформируемая. Выполнен анализ линейной устойчивости стационарного течения в такой системе в условиях существования бимодальной нейтральной кривой и варьировании пористости нижнего слоя. Продемонстрирован переход между двумя основными модами неустойчивости: длинноволновой, связанной с точками перегиба в профиле течения, и коротковолновой, обусловленной большим поперечным градиентом скорости течения вблизи границы раздела жидкости и пористой среды. Уменьшение пористости влечет стабилизацию длинноволновых возмущений без существенного изменения критического волнового числа. Коротковолновые возмущения при этом дестабилизируются, а их критическое волновое меняется в широких пределах. При значении пористости меньше 0.7 инерционные слагаемые в уравнении фильтрации и величина механических напряжений на границе раздела возрастают настолько, что доминирующим механизмом развития неустойчивости становится аналог неустойчивости Кельвина-Гельмгольца. В узком интервале пористости реализуется полоса устойчивости течения, разделяющая ветви нейтральной кривой.
The stability of incompressible fluid plane-parallel flow over a layer of a saturated porous medium is studied. The results of a linear stability analysis are described at different porosity values. The considered system is bounded by solid wall from the porous layer bottom. Top fluid surface is free and rigid. A linear stability analysis of plane-parallel stationary flow is presented. It is realized for parameter area where the neutral stability curves are bimodal. The porosity variation effect on flow stability is considered. It is shown that there is a transition between two main instability modes: long-wave and short-wave. The long-wave instability mechanism is determined by inflection points within the velocity profile. The short-wave instability is due to the large transverse gradient of flow velocity near the interface between liquid and porous medium. Porosity decrease stabilizes the long wave perturbations without significant shift of the critical wavenumber. Simultaneously, the short-wave perturbations destabilize, and their critical wavenumber changes in wide range. When the porosity is less than 0.7, the inertial terms in filtration equation and magnitude of the viscous stress near the interface increase to such an extent that the Kelvin-Helmholtz analogue of instability becomes the dominant mechanism for instability development. The stability band realizes in narrow porosity area. It separates the two branches of the neutral curve.
-
Рассматривается проблема эффективной вычислимости разрешимых моделей классификации конечных объектов. Исследуется конструктивизация условий симультанности (предельно короткого цикла) принятия решения в классификации. Симультанность ("однотактность") достигается параллельным сравнением компонент неизвестной реализации с информативными элементами всех эталонов в обучающей выборке. Конструктивизация условий симультанности предусматривает: выделение информативных элементов (идентификационных меток) в информативных зонах классифицируемых множеств; параллельное покомпонентное сравнение неизвестной реализации конечного объекта с информативными элементами всех эталонов из обучающей выборки. Полученные результаты симультанной схемы принятия решений в классификации интерпретируются в нейронных сетях, в обобщенной модели распознавания, в задачах идентификации.
Consideration is given to the problem of efficient computability of solvablemodels of finite objects classification. We investigate the constructivization of simultaneity (extremely short cycle) conditions of decision adoption in the classification. Simultaneity is achieved by parallel comparing of the components of the unknown implementation with informative elements of all etalons in the training sample. Constructivization of simultaneity conditions includes: a selection of informative elements (identification labels) in the informative areas of classified sets; the parallel component-wise comparison of the unknown realization of a finite object with informative elements of etalons from the training set. The obtained results of simultaneous decision trees in classification is interpreted in neural networks, in a generalized model of recognition, in problems of identification.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.