Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Пространство правильных функций и дифференциальное уравнение с обобщенными функциями в коэффициентах, с. 3-18Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.
-
Об обобщенной краевой задаче для управляемой системы с обратной связью и бесконечным запаздыванием, с. 167-185Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.
-
Изучаются свойства простых идеалов в полукольцах непрерывных функций на топологических пространствах со значениями в единичном отрезке [0, 1]. Описаны максимальные идеалы полуколец непрерывных [0, 1]-значных функций. В терминах полуколец функций получены характеризации ряда свойств компактов. Показано, что теория идеалов в рассматриваемых полукольцах отличается от случая колец
непрерывных функций. -
В данной статье исследуются специфические особенности соотношений между топологической и алгебраической структурами квазигрупп и луп. Исследуется измеримость подмножеств топологических квазигрупп и луп относительно инвариантных мер. Изучается семейство неизмеримых подмножеств в локально компактных недискретных лупах. Выясняется существование локально $\mu$-нулевых подмножеств, не являющихся $\mu$-нулевыми, в локально компактной левой квазигруппе, не являющейся $\sigma$-компактной. Исследуются факторпространства измеримых пространств на квазигруппах. Более того, изучаются однородные пространства квазигрупп, а также счетная отделимость подмножеств в них.
-
В 1976 году Альстер и Пшимусинский построили ненормальное вполне-регулярное сепарабельное топологическое пространство, удовлетворяющее первой аксиоме счетности и имеющее мощность $\aleph_1$. Они также доказали, что в предположении аксиомы Мартина и отрицании континуум-гипотезы нельзя построить подобный пример, который дополнительно кометризуем. Если ослабить условие кометризуемости до субметризуемости, то подобное утверждение доказать нельзя: в данной статье построен пример ненормального вполне-регулярного субметризуемого сепарабельного локально счетного топологического пространства, удовлетворяющего первой аксиоме счетности и имеющего мощность $\aleph_1.$
-
О проекциях произведений пространств, с. 409-413Рассматриваются всюду плотные подмножества произведений топологических пространств. Доказано, что в произведении $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ где $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ сепарабельных пространств существуют счетные всюду плотные множества такие, что всякие счетные их подмножества имеют проекции на грани, обладающие дополнительными свойствами. Это позволяет доказать ряд фактов о всюду плотных множествах, в частности отсутствие сходящихся последовательностей, оценивать характер замкнутых подмножеств произведений.
-
Изучаются условия существования рекуррентных и почти периодических решений неавтономного дифференциального включения с параметром, меняющемся в компактном метрическом пространстве. Приводятся соответствующие следствия для обыкновенных дифференциальных включений.
-
Для пространства линейных управляемых систем, параметризованных с помощью топологической динамической системы, построены для каждого инвариантного (относительно потока в фазовом пространстве динамической системы) пространства расширение и отвечающее ему перроновское преобразование, приводящее заданное семейство систем к так называемой канонической системе. Доказано также, что на минимальных инвариантных пространствах перроновское преобразование обладает свойством рекуррентности.
-
Рассматривается семейство максимальных сцепленных систем, элементами которых являются множества произвольной решетки с «нулем» и «единицей», а также его подсемейство, составленное из ультрафильтров данной решетки. Исследуются соотношения между естественными топологиями, используемыми для оснащения множества максимальных сцепленных систем и множества ультрафильтров упомянутой решетки множеств. Показано, что последнее множество в естественном (для пространств ультрафильтров) оснащении является подпространством пространства максимальных сцепленных систем в оснащении двумя сравнимыми топологиями, одна из которых подобна используемой при построении расширения Волмэна, а вторая соответствует на идейном уровне схеме построения пространства Стоуна в случае, когда решетка является алгеброй множеств. Свойства получающейся битопологической структуры детализированы для случаев, когда решетка является алгеброй множеств, топологией, семейством замкнутых множеств топологического пространства.
-
Рассматриваются общие свойства ультрафильтров π-систем с нулем и единицей, используемые при построении расширений абстрактных задач о достижимости для получения оценок множеств притяжения в топологическом пространстве. Обсуждаются возможности использования упомянутых ультрафильтров в качестве обобщенных элементов. Среди последних выделяются допустимые по отношению к ограничениям асимптотического характера исходной задачи. Целевой оператор данной задачи при очень общих условиях продолжается до непрерывного отображения, сопоставляющего каждому ультрафильтру π-системы предел соответствующего образа. При этом основное множество притяжения (асимптотический аналог множества достижимости) оценивается снизу непрерывным образом аналогичного вспомогательного множества в пространстве ультрафильтров. В частном случае реализации пространства Стоуна (когда используемая π-система является алгеброй множеств) упомянутая оценка превращается в равенство, связывающее искомое и вспомогательное множества притяжения; для последнего указано достаточно простое представление. Обсуждается вариант применения (в оценочных целях) расширения Волмэна.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.