Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'топологическое пространство':
Найдено статей: 19
  1. Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.

  2. Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.

  3. Изучаются свойства простых идеалов в полукольцах непрерывных функций на топологических пространствах со значениями в единичном отрезке [0, 1]. Описаны максимальные идеалы полуколец непрерывных [0, 1]-значных функций. В терминах полуколец функций получены характеризации ряда свойств компактов. Показано, что теория идеалов в рассматриваемых полукольцах отличается от случая колец
    непрерывных функций.

  4. В данной статье исследуются специфические особенности соотношений между топологической и алгебраической структурами квазигрупп и луп. Исследуется измеримость подмножеств топологических квазигрупп и луп относительно инвариантных мер. Изучается семейство неизмеримых подмножеств в локально компактных недискретных лупах. Выясняется существование локально $\mu$-нулевых подмножеств, не являющихся $\mu$-нулевыми, в локально компактной левой квазигруппе, не являющейся $\sigma$-компактной. Исследуются факторпространства измеримых пространств на квазигруппах. Более того, изучаются однородные пространства квазигрупп, а также счетная отделимость подмножеств в них.

  5. В 1976 году Альстер и Пшимусинский построили ненормальное вполне-регулярное сепарабельное топологическое пространство, удовлетворяющее первой аксиоме счетности и имеющее мощность $\aleph_1$. Они также доказали, что в предположении аксиомы Мартина и отрицании континуум-гипотезы нельзя построить подобный пример, который дополнительно кометризуем. Если ослабить условие кометризуемости до субметризуемости, то подобное утверждение доказать нельзя: в данной статье построен пример ненормального вполне-регулярного субметризуемого сепарабельного локально счетного топологического пространства, удовлетворяющего первой аксиоме счетности и имеющего мощность $\aleph_1.$

  6. Рассматриваются всюду плотные подмножества произведений топологических пространств. Доказано, что в произведении $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ где $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ сепарабельных пространств существуют счетные всюду плотные множества такие, что всякие счетные их подмножества имеют проекции на грани, обладающие дополнительными свойствами. Это позволяет доказать ряд фактов о всюду плотных множествах, в частности отсутствие сходящихся последовательностей, оценивать характер замкнутых подмножеств произведений.

  7. Изучаются условия существования рекуррентных и почти периодических решений неавтономного дифференциального включения с параметром, меняющемся в компактном метрическом пространстве. Приводятся соответствующие следствия для обыкновенных дифференциальных включений.

  8. Для пространства линейных управляемых систем, параметризованных с помощью топологической динамической системы, построены для каждого инвариантного (относительно потока в фазовом пространстве динамической системы) пространства расширение и отвечающее ему перроновское преобразование, приводящее заданное семейство систем к так называемой канонической системе. Доказано также, что на минимальных инвариантных пространствах перроновское преобразование обладает свойством рекуррентности.

  9. Рассматривается семейство максимальных сцепленных систем, элементами которых являются множества произвольной решетки с «нулем» и «единицей», а также его подсемейство, составленное из ультрафильтров данной решетки. Исследуются соотношения между естественными топологиями, используемыми для оснащения множества максимальных сцепленных систем и множества ультрафильтров упомянутой решетки множеств. Показано, что последнее множество в естественном (для пространств ультрафильтров) оснащении является подпространством пространства максимальных сцепленных систем в оснащении двумя сравнимыми топологиями, одна из которых подобна используемой при построении расширения Волмэна, а вторая соответствует на идейном уровне схеме построения пространства Стоуна в случае, когда решетка является алгеброй множеств. Свойства получающейся битопологической структуры детализированы для случаев, когда решетка является алгеброй множеств, топологией, семейством замкнутых множеств топологического пространства.

  10. Рассматриваются общие свойства ультрафильтров π-систем с нулем и единицей, используемые при построении расширений абстрактных задач о достижимости для получения оценок множеств притяжения в топологическом пространстве. Обсуждаются возможности использования упомянутых ультрафильтров в качестве обобщенных элементов. Среди последних выделяются допустимые по отношению к ограничениям асимптотического характера исходной задачи. Целевой оператор данной задачи при очень общих условиях продолжается до непрерывного отображения, сопоставляющего каждому ультрафильтру π-системы предел соответствующего образа. При этом основное множество притяжения (асимптотический аналог множества достижимости) оценивается снизу непрерывным образом аналогичного вспомогательного множества в пространстве ультрафильтров. В частном случае реализации пространства Стоуна (когда используемая π-система является алгеброй множеств) упомянутая оценка превращается в равенство, связывающее искомое и вспомогательное множества притяжения; для последнего указано достаточно простое представление. Обсуждается вариант применения (в оценочных целях) расширения Волмэна.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref